


 

 

 
 

 
 
 
 
 

 

Computational Intelligence 
Algorithms for the Diagnosis of 

Neurological Disorders 

This book delves into the transformative potential of artifcial intelligence (AI) and 
machine learning (ML) as game-changers in diagnosing and managing neurodisor-
der conditions. It covers a wide array of methodologies, algorithms, and applications 
in depth. 

Computational Intelligence Algorithms for the Diagnosis of Neurological 
Disorders equips readers with a comprehensive understanding of how compu-
tational intelligence empowers healthcare professionals in the fght against neu-
rodisorders. Through practical examples and clear explanations, it explores the 
diverse applications of these technologies, showcasing their ability to analyze 
complex medical data, identify subtle patterns, and contribute to the develop-
ment of more accurate and effcient diagnostic tools. The authors delve into the 
exciting possibilities of AI-powered algorithms, exploring their ability to analyze 
various data sources like neuroimaging scans, genetic information, and cognitive 
assessments. They also examine the realm of ML for pattern recognition, enabling 
the identifcation of early disease markers and facilitating timely intervention. 
Finally, the authors also address the critical challenges of data privacy and secu-
rity, emphasizing the need for robust ethical frameworks to safeguard sensitive 
patient information. 

This book aims to spark a conversation and foster collaboration among researchers, 
clinicians, and technologists, and will assist radiologists and neurologists in making 
precise diagnoses with enhanced accuracy. 
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Preface 
Neurological disorders represent a signifcant and growing challenge in modern medi-
cine, affecting millions of individuals worldwide. With advancements in computa-
tional intelligence (CI), artifcial intelligence (AI), and machine learning (ML), we 
are witnessing a paradigm shift in how these disorders are diagnosed, monitored, and 
managed. The fusion of cutting-edge computational methods with neuroscience has 
the potential to revolutionize early detection, enhance treatment effcacy, and provide 
deeper insights into the complexities of the human brain. This book, Computational 
Intelligence Algorithms for the Diagnosis of Neurological Disorders, aims to present a 
comprehensive overview of the latest research and developments in this interdisciplin-
ary feld. It brings together leading experts from across the globe to explore the role of 
computational techniques in addressing neurological conditions such as Parkinson’s dis-
ease, Alzheimer’s disease, autism spectrum disorder, and brain tumors, among others. 

Structured into three major sections, this book begins with an introduction 
to neurological disorders and the challenges associated with computational neu-
rology. Ethical considerations in neurodisorder diagnosis and treatment are also 
discussed, emphasizing the need for the compassionate and responsible applica-
tion of artifcial intelligence. The second section delves into neuroimaging and 
diagnostic techniques, highlighting advancements in magnetic resonance imaging 
(MRI), deep learning applications, and targeted drug delivery. These technologies 
have signifcantly enhanced our ability to detect, classify, and analyze neurologi-
cal disorders with higher precision and accuracy. The fnal section focuses on the 
application of ML and AI in neurological disorder diagnosis. From supervised 
learning models to deep learning and federated learning approaches, this section 
demonstrates how AI-driven solutions are shaping the future of neurorehabilita-
tion and patient care. 

The objective of this book is to serve as a valuable resource for researchers, medical 
professionals, computer scientists, and students interested in the intersection of com-
putational intelligence and neurology. By fostering a deeper understanding of AI’s role 
in neuroscience, we hope to contribute to more effective diagnostic methodologies and 
ultimately improve patient outcomes. We extend our sincere gratitude to the authors, 
researchers, and professionals who have contributed to this book. Their dedication and 
expertise have made it possible to present a comprehensive and insightful compilation 
of knowledge. We also appreciate the support of the institutions and organizations that 
have encouraged this endeavor. We hope that this book inspires further research and 
innovation in computational intelligence for neurological disorder diagnosis, paving 
the way for breakthroughs that will transform the future of medical science. 
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1 Introduction to 
Neurological Disorders 

T. Manonmani, Mohit Malik, and P. Abinaya 

1.1 INTRODUCTION 

Neurological disorders can cause a signifcant impact on individual’s quality of 
life. They are defned by their impact on the brain and the nerves that extend 
throughout the body, including the spinal cord. This group of disorders affects the 
nervous system, can impact individuals of any age, and are prevalent across the 
globe, signifcantly impacting quality of life. These disorders encompass a wide 
range of conditions, including epilepsy, Alzheimer’s disease, multiple sclerosis 
(MS), Parkinson’s disease, and stroke, among others. Additionally, the economic 
implications of these disorders are substantial, as they frequently necessitate pro-
longed treatment, rehabilitation, and caregiving. 

Neurological disorders have a rich history of recognition, dating back to ancient 
civilizations. 

The Edwin Smith Papyrus, an ancient Egyptian text, provides early documen-
tation of brain injuries, highlighting the civilization’s rudimentary understand-
ing of neurology [1]. In ancient Greece, physicians like Hippocrates discussed 
epilepsy, suggesting it was a natural occurrence rather than one caused by divine 
or supernatural forces. During the Middle Ages, explanations for neurological 
disorders often stemmed from superstition, with many conditions framed as 
demonic possession or divine punishment [2]. However, during the Renaissance, 
scientific inquiry revived, leading to significant advancements in our under-
standing of the brain. Andreas Vesalius was instrumental in developing detailed 
anatomical illustrations of the brain, and Thomas Willis later made significant 
contributions by coining the term “neurology” and enhancing our understand-
ing of brain function [3]. In the nineteenth century, neurology emerged as a 
distinct field of medical study. Pioneers like Jean-Martin Charcot advanced 
the study of brain diseases such as MS and Parkinson’s disease through clini-
cal observation and systematic study [4]. The twentieth century saw the intro-
duction of neuroimaging technologies, such as magnetic resonance imaging 
(MRI) and computed tomography (CT) scans, alongside advances in molecular 
biology, which have revolutionized the analysis and treatment of neurological 
disorders [5]. These milestones have paved the way for modern neurology, 
transforming diagnosis and treatment and deepening our knowledge on brain’s 
complexities. 

DOI: 10.1201/9781003520344-2 
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4 Computational Intelligence Algorithms 

1.1.1 NEURODIVERSITY 

Neurodiversity alludes to the concept that neurological differences, such as Autism, 
attention defcit hyperactivity disorder (ADHD), dyslexia, and others, are natural 
variations in the human brain. Rather than viewing these conditions as defcits or 
disorders, neurodiversity emphasizes that each brain functions uniquely, bringing 
different strengths and challenges. People having these conditions often exhibit tal-
ents like creativity, hyperfocus, and problem-solving skills that enrich society. 

Figure 1.1 encapsulates the core idea of neurodiversity, highlighting different neuro-
logical conditions, strengths, and properties that are associated with neurodiverse indi-
viduals. The fgure highlights conditions like dyscalculia, dyslexia, ADHD, Tourette 
syndrome, autism spectrum disorder (ASD), developmental coordination disorder 
(DCD), and acquired neurodiversity, showing how these often come with unique cog-
nitive or creative advantages. For instance, dyscalculia, characterized by diffculties 
with math and number processing, is associated with enhanced creativity [6]. Many 
individuals with dyscalculia possess enhanced creative abilities and may excel in felds 
that require innovative problem-solving or out-of-the-box thinking. Dyslexia is a con-
dition that makes it hard for people to read because they struggle to recognize speech 
sounds and understand how these sounds connect to letters and words (also known as 
decoding). Dyslexia-affected people often show real and genuine ways of communi-
cating and solving problems, making up for their diffculties in normal learning pro-
cedures with their own unique perspectives [7]. ADHD is a disorder characterized 
by a consistent pattern of inattention, hyperactivity, and impulsiveness that disrupts 
daily functioning or growth. Although individuals having ADHD might have trouble 
concentrating and controlling their impulses, their strong ability to focus on things 
they fnd interesting can be a valuable skill. Tourette syndrome [8] is a brain condition 
that involves repeated, involuntary movements and sounds known as tics. People with 
Tourette’s often come up with unusual ways to deal with their tics, which can lead to 
creative and innovative approaches to problems in other parts of their lives. 

Neurodiversity refers to changes in brain function or structure due to various 
life experiences such as injury, illness, or aging. This includes circumstances like 
traumatic brain injury (TBI) or stroke. People who develop neurological differences 

FIGURE 1.1 Neurodiversity: Highlighting strength in every mind. 



   

 

5 Introduction to Neurological Disorders 

often show incredible strength and fexibility in learning how to navigate and thrive 
despite their challenges. This often includes conduct with issues such as anxiety, 
depression, or other emotional conditions that can affect thinking and general 
health. Many individuals with neurodiversity, including those who are very sensi-
tive to mental health, are highly attuned with their surroundings and have improved 
abilities to process sensory information. ASD, despite its diffculties in social com-
munication, is also connected to traits like truthfulness and increased awareness of 
sensory experiences. 

Finally, people having DCD often face diffculties with motor skills but demon-
strate strong verbal skills [9]. By recognizing and supporting neurodiverse individu-
als, we can foster inclusive environments where everyone’s contributions are valued. 
Neurodiversity encourages us to appreciate diverse ways of thinking and to chal-
lenge traditional views of “normal” brain function. 

1.1.2 TYPES OF NEUROLOGICAL DISORDERS 

Degenerative disorders like Alzheimer’s and Parkinson’s are distinguished by 
the progressive loss of nerve cells and accelerated decline in brain function. For 
instance, Alzheimer’s disease causes loss of memory, a low in mental abilities, and 
challenges in performing daily tasks. Parkinson’s disease is linked to tremors, stiff-
ness, slowness in movement, and trouble walking. Cerebrovascular diseases, like 
strokes, happen when the blood supply to the brain is interrupted, causing harm 
to brain cells. This can cause different symptoms, such as weakness or paralysis, 
problems with speaking or comprehending, issues with vision, and alterations in 
emotions or behavior. 

Figure 1.2 highlights various types of neurological disorders. Seizure disorders, 
including epilepsy, are characterized by recurrent and unprovoked seizures resulting 

FIGURE 1.2 Types of neurological disorders. 
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from abnormal electrical activity in the brain. The intensity of these seizures can 
vary from brief, mild episodes to extended, severe convulsions. Neurodevelopmental 
disorders refer to conditions that impact the development of the nervous system either 
prenatally or during early childhood. ASD is marked by challenges in social interac-
tion, communication, and behavior. Cerebral palsy represents a physical disability 
that infuences movement and coordination. Traumatic disorders arise from physical 
injuries to the nervous system, such as TBI or spinal cord injury. TBI may lead to 
cognitive impairments, physical restrictions, emotional diffculties, and changes in 
behavior. 

Injuries in spinal card can result in paralysis or a loss of sensory function below 
the injury site. Infectious diseases such as meningitis and encephalitis arise from 
infections that impact the nervous system. Meningitis is infammation of the menin-
ges, which are the protective membranes encasing the brain and spinal cord, whereas 
encephalitis denotes infammation of the brain itself. Both conditions can manifest 
severe symptoms, including fever, headaches, neck stiffness, seizures, and altera-
tions in mental status. Genetic disorders stem from inherited mutations within genes. 
Huntington’s disease is a progressive neurodegenerative condition resulting from a 
dominant mutation in a single gene. Muscular dystrophy encompasses a range of 
genetic disorders characterized by progressive muscle weakness and degeneration. 
The specifc symptoms, underlying causes, and treatment options for neurological 
disorders [10] can differ signifcantly based on the type of disorder and the indi-
vidual’s unique situation. 

1.1.3 CAUSES AND SYMPTOMS OF NEURODISORDERS 

Neurodegenerative disorders and other neurological conditions affect the brain and 
nervous system in various ways, leading to a range of symptoms that can signif-
cantly impair a person’s cognitive, motor, and sensory functions. Figure 1.3 repre-
sents the pictorial representation of major brain disorders. Brain disorders such as 
Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are character-
ized by the progressive degeneration and death of neurons. These conditions are 
often driven by abnormal protein accumulations in the brain, which disrupt normal 

FIGURE 1.3 Pictorial representation of brain with various disorders. 
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neural functions. The most prominent symptoms include cognitive decline, mem-
ory loss, and motor dysfunction. For instance, in Alzheimer’s disease, the buildup 
of beta-amyloid plaques and tau tangles contributes to the destruction of neurons 
responsible for memory and learning, leading to profound cognitive impairments 
[11]. Parkinson’s disease specifcally affects the dopaminergic neurons in the sub-
stantia nigra region of the brain. The depletion of dopamine, a neurotransmitter 
crucial for regulating movement, results in a range of motor symptoms, including 
tremors, muscle rigidity, and bradykinesia (slowness of movement). Over time, these 
symptoms progress, leading to diffculty in performing even simple tasks [12]. In 
contrast, MS is an autoimmune disorder rather than a classic neurodegenerative dis-
ease. The immune system mistakenly targets and damages the myelin sheath, the 
protective covering of nerve fbers, impairing the transmission of signals between 
the brain and several parts of the body. As the damage accumulates, individuals 
experience muscle weakness, vision problems, and overwhelming fatigue [13]. 

Table 1.1 depicts various types of neurodisorders with their cause and symptoms. 
Cerebrovascular disorders, such as stroke and transient ischemic attacks (TIA) [14], 
are caused by interruptions in the blood supply to the brain. These interruptions, 
often the result of blood clots or the rupture of blood vessels, deprive brain cells of 
oxygen, leading to cell death. The consequences can be severe, including paralysis, 
diffculties with speech, and cognitive impairments. In the case of a stroke, the dam-
age may be permanent, while TIAs serve as warning signs of potential larger strokes 
[15]. Furthermore, seizure disorders like epilepsy stem from abnormal electrical 
activity within the brain. Due to electrical disturbances, seizures will result, which 
manifest as convulsions, loss of consciousness, or sensory disruptions. Seizures [16] 
vary in intensity and frequency and can signifcantly disrupt an individual’s life if 
left untreated. 

Migraines, triggered by genetic and environmental factors, cause intense head-
aches, nausea, and light sensitivity [17]. Amyotrophic lateral sclerosis (ALS), often 
of unknown origin, leads to progressive muscle weakness, speech diffculties, and 
eventual paralysis [18]. Neurodevelopmental disorders, such as ASD and ADHD, are 
associated with atypical brain development that can manifest in early childhood as 
social, communicative, or attention-related challenges [19]. Infectious causes, such 
as bacterial, viral, or parasitic infections, affect the nervous system, exemplifed by 
conditions like meningitis or encephalitis [20]. Genetic mutations may lead to inher-
ited neurological conditions, such as familial forms of Alzheimer’s disease or mus-
cular dystrophy [21]. These diverse causes highlight the complexity and multifaceted 
nature of neurological disorders. Huntington’s disease, a genetic disorder, causes 
involuntary movements, cognitive decline, and mood changes [22]. Neuropathy, 
commonly resulting from diabetes or toxins, leads to numbness, pain, and tingling 
in extremities. Cerebral palsy, typically caused by brain damage during birth, results 
in motor impairments and poor balance [23]. Dementia, often due to age-related 
brain degeneration, results in memory loss and cognitive impairment. Finally, 
Guillain-Barré syndrome, an autoimmune disorder triggered by infections, causes 
muscle weakness and breathing diffculties [24]. These disorders, while varied in 
their causes, often share symptoms related to neurological dysfunction, emphasizing 
the complex nature of the nervous system. This overview of neurological disorders 
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TABLE 1.1 
Neurodisorders Causes and Symptoms 

Category Cause 
Alzheimer’s disease • Age-related degeneration 

• Genetic factors 
• Accumulation of amyloid 

plaques 

Parkinson’s disease • Loss of dopamine 
producing neurons, genetic 
mutations 

MS • Autoimmune attack on 
myelin sheath 

• Genetic and environmental 
factors 

Stroke • Blood clot (ischemic stroke) 
• Haemorrhage (bleeding in 

the brain) 

Epilepsy • Unusual electrical activity 
in the brain 

• Brain injury, genetic factors 

Migraine • Genetic predisposition 
• Hormonal changes 
• Environmental triggers 

Amyotrophic lateral • Unknown (may involve 
sclerosis (ALS) genetic mutations or 

environmental factors) 

Huntington’s disease • Genetic mutation in the 
huntingtin (HTT) gene 

Neuropathy • Diabetes, infections 
• Autoimmune diseases, 

toxins 

Cerebral palsy • Brain damage during birth 
or early childhood 

• Infections 

Traumatic brain • External trauma (e.g., 
injury (TBI accidents, falls) 

Dementia • Degeneration of brain tissue 
• Vascular damage 
• Genetic factors 

Guillain-Barré • Autoimmune attack on 
syndrome peripheral nerves 

• Often triggered by 
infections 

Symptoms 
• Memory loss, confusion 
• Cognitive decline 
• Diffculty speaking and understanding 

language 

• Tremors, muscle rigidity 
• Slowed movement, balance issues 

• Muscle weakness 
• Numbness or tingling 
• Fatigue, vision problems 
• Loss of coordination 

• Sudden numbness or weakness 
• Diffculty speaking or understanding 

speech 
• Vision problems, loss of coordination 

• Seizures 
• Temporary confusion 
• Loss of awareness or consciousness 

• Intense headaches 
• Sensitivity to light and sound 
• Nausea and vomiting 

• Muscle weakness 
• Diffculty speaking, swallowing 
• Paralysis, breathing diffculties 

• Involuntary movements 
• Cognitive decline, behavioral 

changes 

• Numbness or tingling, pain 
• Muscle weakness 

• Motor skill impairment 
• Muscle stiffness 
• Poor balance and coordination 

• Headaches, memory loss 
• Mood swings, diffculty concentrating 
• Dizziness and confusion 

• Memory loss, cognitive decline 
• Confusion 
• Behavioral changes 

• Muscle weakness, diffculty walking 
• Tingling in extremities 
• Breathing diffculties 
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highlights the complex mechanisms and varied symptoms associated with condi-
tions that affect the nervous system. Each disorder requires tailored medical inter-
vention, focusing on both managing symptoms and, where possible, slowing disease 
progression. 

1.1.4 DIAGNOSIS OF NEUROLOGICAL DISORDERS 

USING NEUROIMAGING TECHNIQUES 

Neuroimaging remains a cornerstone in the diagnosis of neurological disorders. 
Neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, epilepsy, 
and MS, often progress over time. Early diagnosis helps with prompt intervention, 
which can slow the progression of the disease, improve quality of life, and in some 
cases halt further damage. Diagnosing neurological disorders has evolved signif-
cantly in recent years, with advancements in technology and medical understanding 
improving accuracy, speed, and depth of diagnosis. Some of the notable trends and 
techniques in diagnosing neurological disorders include: Techniques like MRI and 
CT scans provide detailed images of the brain, aiding in the detection of condi-
tions such as stroke, brain tumors, and MS [25]. More advanced versions like func-
tional MRI (fMRI) allow real-time tracking of brain activity by measuring blood 
fow, useful in diagnosing epilepsy and neurodegenerative diseases [26]. These 
techniques allow researchers to visualize brain activity, map neural pathways, and 
investigate the underlying mechanisms of cognition and behavior. In this section, we 
explore various neuroimaging methods, each offering unique insights into the brain’s 
functioning. 

Structural MRI provides detailed images of brain anatomy, helping to identify 
brain abnormalities, such as tumors or damage [27]. Functional MRI measures 
brain activity by detecting changes in blood fow, allowing researchers to observe 
which areas of the brain are active during specifc cognitive tasks. Positron emission 
tomography (PET) scans [28] can detect amyloid plaques and tau tangles, which 
are hallmark biomarkers of Alzheimer’s, allowing early diagnosis before signifcant 
cognitive decline occurs. Radioactive tracers [29] are used to map areas of the brain 
that consume more energy, typically highlighting regions involved in certain func-
tions like memory, language, and emotion. 

Electroencephalography (EEG) is widely used to diagnose epilepsy by recording 
electrical activity via electrodes placed on the scalp, making it useful for studying 
temporal dynamics of cognitive processes with high time resolution. It can detect 
abnormal patterns that indicate seizures and is also used to assess sleep disorders 
and monitor brain activity in comatose patients [16]. Magnetoencephalography 
(MEG) measures the magnetic felds produced by neural activity, offering precise 
temporal resolution while also mapping brain function spatially [30]. Diffusion ten-
sor imaging (DTI) is a form of MRI that visualizes white matter tracts, helping to 
map the brain’s intricate network of connections and studying conditions like MS 
and brain injuries [31]. near-infrared spectroscopy (NIRS) is a noninvasive method 
that uses infrared light to monitor blood oxygenation, providing insights into brain 
function, especially in infants or during motor tasks [32]. Each of these methods 
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provides a different perspective, contributing to a holistic understanding of the brain. 
Although each imaging modality has its strengths and limitations, advancements in 
neuroimaging technology continue to expand our ability to explore brain function in 
health and disease. 

1.1.5 TECHNOLOGICAL ADVANCEMENTS IN NEURODISORDER ANALYSIS 

Recent advancements in neuroscience and technology, however, have dramatically 
transformed the landscape of neurodisorder analysis. Breakthroughs in neuroimag-
ing, computational modeling, and artifcial intelligence are paving the way for earlier 
diagnosis, personalized treatments, and a deeper understanding of brain dysfunc-
tion. Following are the technological advancements that not only enhance our under-
standing of neurodisorders but also offer hope for earlier, more accurate diagnoses 
and the development of novel, individualized treatments, signifcantly improving 
patient outcomes. 

AI and ML have revolutionized neurodisorder analysis by enabling pattern rec-
ognition in large, complex datasets. AI models can now predict the progression of 
neurodegenerative diseases, differentiate between various neurodisorders, and iden-
tify biomarkers that are often undetectable through traditional methods [33]. Deep 
learning models trained on brain imaging data have signifcantly improved diagnos-
tic accuracy and provided predictive insights into treatment responses for conditions 
like MS and epilepsy [34]. 

With the growing understanding of the genetic basis for many neurological dis-
orders, genetic testing has become an essential diagnostic tool, particularly for dis-
eases like Huntington’s disease, Parkinson’s disease, are various forms of epilepsy 
[35]. Advances in next-generation sequencing (NGS) technologies allow for the 
rapid sequencing of genes, aiding in early diagnosis and personalized treatment. 
The identifcation of biomarkers for neurodegenerative diseases is a growing area 
of research. Cerebrospinal fuid (CSF) analysis to detect proteins like amyloid-
beta, tau, and alpha-synuclein is helping to diagnose diseases such as Alzheimer’s 
and Parkinson’s disease [36]. Blood-based biomarkers are also being developed 
for noninvasive diagnosis [37]. Electromyography (EMG) and nerve conduction 
studies (NCS) are used to assess the health of muscles and the nerves control-
ling them. EMG and NCS are critical in diagnosing peripheral nerve disorders, 
such as neuropathy, and neuromuscular junction diseases like amyotrophic lateral 
sclerosis (ALS). MEG records the magnetic felds produced by neuronal activity 
in the brain and is useful in pinpointing seizure locations in epilepsy patients. It 
provides greater spatial resolution than EEG and is a valuable tool for presurgical 
planning in epilepsy [38]. Wearable devices such as smartwatches and biosensors 
are emerging as diagnostic tools for neurological disorders. They continuously 
monitor physiological data like movement, heart rate, and sleep patterns, which 
can help in diagnosing and managing conditions like Parkinson’s disease and epi-
lepsy [39]. With advancements in computational tools, cognitive testing has gone 
digital. Cognitive assessments using apps and online platforms are being used to 
detect early signs of cognitive decline or memory impairment, often in the context 
of dementia [40]. 
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1.1.6 TREATMENTS FOR NEUROLOGICAL DISORDERS 

Treating neurological disorders requires a multidisciplinary approach that often 
includes medication, rehabilitation, surgery, and cutting-edge therapies such as 
neurostimulation and gene therapy. The choice of treatment varies depending on the 
type and severity of the disorder, with recent advancements improving the manage-
ment and outcomes of conditions such as Alzheimer’s, Parkinson’s, MS, and epilepsy. 

Medications remain the cornerstone of treatment for many neurological disor-
ders. For example, levodopa is widely used to manage Parkinson’s disease by replen-
ishing dopamine levels in the brain [41]. Similarly, anticonvulsants, such as valproate 
and carbamazepine, are standard treatments for controlling seizures in epilepsy [22]. 
In Alzheimer’s disease, cholinesterase inhibitors and NMDA receptor antagonists, 
like donepezil and memantine, help slow cognitive decline. Rehabilitation, includ-
ing physical therapy, occupational therapy, and speech therapy, plays a critical role 
in managing the symptoms of neurological disorders, particularly after strokes or 
traumatic brain injuries. Rehabilitation helps patients regain motor skills, improve 
speech, and maintain cognitive functioning. In certain cases, surgery is required 
to treat neurological conditions. For instance, deep brain stimulation (DBS) is an 
established surgical procedure for Parkinson’s disease and epilepsy, involving the 
implantation of electrodes that modulate abnormal brain activity [42]. Epilepsy sur-
gery, where parts of the brain responsible for seizures are removed, is another option 
for patients with drug-resistant epilepsy [43]. Neurostimulation techniques, includ-
ing transcranial magnetic stimulation (TMS) and vagus nerve stimulation (VNS), 
are gaining prominence in the treatment of neurological disorders like depression 
and epilepsy. TMS involves using magnetic felds to stimulate nerve cells in the 
brain, helping with depression resistant to other treatments, while VNS uses electri-
cal impulses to stimulate the vagus nerve to control seizures [16]. 

Gene therapy and stem cell research are pioneering areas offering potential cures 
for previously untreatable neurological disorders. In conditions like spinal muscular 
atrophy (SMA), gene therapy using Zolgensma has been a breakthrough by address-
ing the genetic root cause of the disorder [44]. Stem cell-based therapies are being 
explored for their potential to regenerate damaged neural tissue, with early success 
in conditions such as MS [27] Lifestyle modifcations and complementary thera-
pies [45] can also support neurological health. Mindfulness, yoga, and acupuncture 
have been found to alleviate symptoms and improve quality of life for patients with 
chronic neurological conditions [46]. 

With the ongoing integration of cutting-edge technologies like machine learning, 
neurogenetics, and stem cell research, the future of neurological disorder treatment 
is poised to become more personalized and effective. These advancements bring 
hope not only for better management of symptoms but also for potential cures to 
previously untreatable conditions. 

1.1.7 RECENT RESEARCH ADVANCEMENTS IN NEURODISORDER TREATMENTS 

In recent years, signifcant evolution in the treatment of neurological disorders 
have emerged, offering new hope for patients facing conditions that were once 
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deemed untreatable or diffcult to manage. Table 1.2 summarizes the advancement 
of research fndings in treating neurodisorder diseases. However, breakthroughs in 
neuropharmacology, gene therapy, neuromodulation, and specialized medicine have 
revolutionized the therapeutic landscape, improving both patient outcomes and qual-
ity of life. 

The rapid progress in treating neurological disorders over the past fve years has 
transformed the outlook for many patients. From gene therapy to targeted neurostim-
ulation, these innovations offer promising new avenues for managing and potentially 

TABLE 1.2 
Research Advancement in Treating Neurodisorders 

Neurological Research 
Disorder Advancement Description Authors 
Alzheimer’s Anti-amyloid Targeting amyloid-beta plaques to slow [47], Alexander 
disease drugs cognitive decline in early Alzheimer’s et al., 2021 

(Aducanumab) 

Parkinson’s Deep brain Targeting more precise brain areas, [42], Benabid 
disease stimulation improving motor function and et al., 2020, 

(DBS) reducing side effects 

Multiple sclerosis Disease-modifying Ocrelizumab, a B-cell depleting [48], Hauser 
(MS) therapies therapy, shown to slow progression of et al., 2020 

primary progressive MS 

Spinal muscular Gene therapy One-time gene therapy targeting the [44], Mendell 
atrophy (SMA) (Zolgensma) genetic cause and improving motor et al., 2019 

function in infants 

Epilepsy Responsive Implantable device delivering targeted [16], Fisher 
neurostimulation electrical stimulation to prevent et al., 2021 
(RNS) seizures 

Stroke Endovascular Mechanical clot removal for treating [49], Campbell 
thrombectomy ischemic stroke et al., 2019 

Amyotrophic Tofersen antisense Antisense oligonucleotide therapy for [50], Miller 
lateral sclerosis therapy patients with this genetic subtype et al., 2022 
(ALS) 

Migraine Monoclonal Monoclonal antibodies prevent [17], Goadsby 
antibodies migraine attacks et al., 2020 

Huntington’s RNA interference Therapies targeting the huntingtin gene [51], Tabrizi 
disease therapies to reduce its production et al., 2020 

Traumatic brain Transcranial Used to enhance cognitive [52], Nielson 
injury (TBI) magnetic rehabilitation to improve memory and et al., 2021 

stimulation executive functions 
(TMS) 

Autism spectrum Oxytocin-based Oxytocin nasal spray to improve social [53], Parker 
disorder (ASD) therapies behaviors and emotional responses et al., 2021 

Chronic pain Neuromodulation Treating chronic pain associated with [54], Deer 
neurological disorders et al., 2020 
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curing neurological diseases. As research continues to evolve, the future holds the 
potential for even more personalized and effective treatments, signifcantly improv-
ing the lives of those affected by these debilitating conditions. 

1.1.8 PRECAUTIONARY MEASURES AGAINST NEUROLOGICAL DISORDERS 

Many neurological disorders are linked to genetic factors or aging, but there are 
several precautionary measures that individuals can take to reduce the risk of devel-
oping or exacerbating these conditions. These measures, primarily centered on main-
taining overall brain health, can help prevent disorders such as stroke, dementia, 
Parkinson’s disease, and other cognitive impairments. A balanced diet rich in antiox-
idants, vitamins, and healthy fats is crucial for brain health. The Mediterranean diet, 
with fruits, vegetables, whole grains, fsh, and healthy fats like olive oil, has been 
linked to a lower risk of Alzheimer’s disease and other neurodegenerative disorders 
[55]. Omega-3 fatty acids, found in fsh and faxseed, are particularly benefcial for 
reducing infammation and protecting neurons. Regular exercise supports neurogen-
esis, improves blood fow to the brain, and reduces the risk of stroke and cognitive 
decline. Aerobic exercises like swimming, walking, and cycling have been shown to 
enhance memory, executive function, and overall cognitive health [56]. Consistent 
physical activity can also mitigate the progression of conditions like Parkinson’s 
disease. 

Engaging in mental exercises such as puzzles, learning new skills, reading, or 
playing musical instruments helps keep the brain active and promotes neuroplasti-
city. Studies suggest that lifelong learning and cognitive training may minimize the 
risk of dementia by improving cognitive reserve [57]. Chronic stress is linked to a 
higher risk of neurological disorders, particularly anxiety, depression, and cognitive 
decline. Practices like mindfulness meditation, yoga, and deep breathing can help 
reduce stress and improve emotional regulation, contributing to better long-term 
brain health [58]. Sleep is vital for the brain’s restoration, memory consolidation, 
and removal of toxic waste products. Chronic sleep deprivation is interrelated with 
an increased risk of neurodegenerative diseases like Alzheimer’s. Ensuring seven to 
nine hours of quality sleep per night and maintaining a consistent sleep routine can 
signifcantly beneft brain health. 

Avoiding substances that can harm the brain, such as excessive alcohol, recre-
ational drugs, and tobacco, is essential for preventing neurological disorders. These 
substances can lead to neuron damage, impair cognitive function, and increase the 
risk of conditions like stroke and dementia [59]. For stroke and cognitive decline, 
high blood pressure, high cholesterol, obesity, and diabetes are major risk factors. 
Managing these conditions through medication, diet, and lifestyle modifcations 
helps maintain healthy blood fow to the brain and prevents damage to neurons [60]. 
Routine medical checkups can prevent conditions like stroke or diabetes, both of 
which are closely linked to neurological disorders. By adopting these precautionary 
measures, individuals can remarkably reduce their risk of developing neurological 
disorders and improve their overall brain health. While not all neurological disorders 
are preventable, a proactive approach to brain health can mitigate risk factors and 
enhance cognitive resilience throughout life. 
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1.2 CONCLUSION 

The feld of neurological disorders continues to be one of the most complex and 
evolving areas of medical science. As this chapter has explored, neurological condi-
tions such as Alzheimer’s disease, Parkinson’s disease, epilepsy, and neurodevel-
opmental disorders have profound impacts on individuals and society. Despite the 
challenges in diagnosing and treating these disorders, advancements in neuroim-
aging techniques, genetic research, and therapeutic interventions have signifcantly 
improved our understanding of these conditions. Technological innovations, includ-
ing artifcial intelligence and gene therapy, offer new hope for more accurate diag-
noses and personalized treatments. These breakthroughs are paving the way for 
managing neurological disorders more effectively, ultimately enhancing the quality 
of life for patients. Furthermore, an increased focus on preventive measures, such 
as healthy lifestyle choices and cognitive training, underscores the importance of 
proactive approaches to brain health. As research continues to advance, the poten-
tial for new treatments and preventative strategies grows, offering promising future 
directions for addressing the global burden of neurological disorders. By integrating 
cutting-edge technology with personalized medicine and rehabilitation, the medical 
community is better equipped to meet the needs of individuals affected by these 
complex conditions. 
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2 Navigating the 
Complexities of the Brain 
Challenges and 
Opportunities in 
Computational 
Neurology 

Ginni Arora, Alvaro Rocha, and Syamsundar Patta 

2.1 INTRODUCTION TO COMPUTATIONAL NEUROLOGY 

Computational neurology is the independent subdivision that involves using meth-
ods that belongs to neuroscience and creative mathematical models of the brain and 
the nervous system. These models act and analyze complex neural problems and 
processes, which involves in neuroperformances, interneuron relations, and neuro-
pathological diseases. Therefore, when we use this in our daily lives, computational 
applications help create new developments in neurology about the functioning of the 
brain. Applications like this may be benefcial to scholars and junior doctors to dis-
cover new treatments for neurological disorders. This enhances the brain−computer 
interface method and helps to understand the impact of head injuries on human 
behavior. 

Following are the methods that get to know about the behavior of the brain [1]: 

1. Disease diagnosis and treatment: Conditions like epilepsy and Parkinson’s 
disease affect neural networks. It is diffcult to imitate these conditions 
on a computer, so instead they are simulated. Such simulations are essen-
tial to researchers so that they can provide crucial ideas for determining 
some of the fundamental characteristics of the disease and the required 
treatment. 

2. Brain−computer interfaces: Neurological computation is utilized to con-
struct and develop the brain−computer interface (BCI), where people man-
age devices without actually thinking about them. The applications of BCI 
can aid those with motor disorders like language, emotional, cognitive, 
hearing, and visual impairment, especially in the area of assistive tech-
nology, communication, and neurology for patients with physical disorders 
during their rehabilitation. 
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3. Neural prosthetics: Neural prosthetic devices are designed and analyzed to 
determine the shapes of neural implant devices proposed that are favorable 
and can be used by a person who become paralyzed through the spine or 
any other reasons. 

4. Brain imaging analysis: Multiple methods are used to analyze the data that 
are aggregated from various procedures like MRI and electrical mapping 
processes. Brain imaging complements the benefcial strategies through 
which scientists research where and to what level the human brain involves 
and interacts with a range of diverse mental processes and neuropsychiatric 
illnesses. 

Neurocomputing is a branch that deals with mathematical and computing neu-
rology to gain knowledge about the human brain and other related organs. It refers 
to the developmental process of computational models, algorithms that can ana-
lyze and develop neural systems through the real environment. Computational 
neurology is evolving rapidly by combining neuroscience and computer science 
to understand the structure and functions of the brain. There are some features 
like modern developments, futuristic tools, and potential revolutionary impact of 
computational neurology. The following are modern development tools that help 
in neurology: 

1. Neural networking: The neural networking method is inspired by struc-
ture of the brain. The artificial intelligence (AI) system can learn and 
adapt as the human brain to understand and solve new age problems 
in an accurate way. The neural network will help to adapt to the prob-
lems faced in future. In this method, neurology can adapt to the situ-
ation and can understand the difficulty in it to solve problems in an 
inspiring way. 

2. Neuroinformatics: It helps to develop database and tools that can analyze 
brain data. Neuroinformatics can also analyze new functions in brain to 
upgrade or to develop new features in treating people in a possible way 
without failing. 

3. Simulations: Computational models can mimic brain activity to help 
researchers test hypotheses. It is an emerging approach to integrate the 
knowledge dispersed throughout the feld of neuroscience. 

Revolutionary impact: 

1. Personalized medicine: Treatments are tailored for neurological disorders. 
Such treatments include a variety of approaches, like medication, rehabili-
tation, assistive devices, pain management, etc. 

2. Brain enhancement: It has the potential for cognitive enhancement and 
memory augmentations. 

3. Neurological disorder treatment: New insights and treatments for 
Alzheimer’s, Parkinson’s, and similar disorders. 
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Futuristic tools: 

1. Neural dust: This is the method to insert tiny implantable sensors to moni-
tor brain activity. 

2. Optogenetics: It uses light to control specifc brain cells. 
3. Quantum computing: This may enable simulations of complex brain 

processes. 

Figure 2.1 explains the schematic of computational and theoretical approaches in 
computational neurology, from fundamental research to clinical applications. Dark 
gray boxes are small or focused data, light gray boxes are larger or more hetero-
geneous data, and arrows represent relationships. Sometimes AI, data mining, and 
machine learning methods are also used in relatively smaller or less heterogeneous 
data to guide mechanistic modeling. Here we can see the focused data to the clini-
cal decision support system (CDSS) have many steps to follow and get the result. 
Here small and focused data are processed to models like mechanistic modeling and 
probabilistic or statistical analysis. In the same way, large and heterogeneous data 
will be processed, but in this process of modeling no mechanistic modeling process 
will be included. Only probabilistic and statistical analysis modeling will be used as 
primary modeling tools. 

Modeling neural dynamics involves developing mathematical and computational 
models to understand the behavior of neural systems, from single neurons to large-
scale brain networks. By modeling neural dynamics, researchers and clinicians can 
better understand the brain, develop more effective treatments, and improve human 
performance, leading to a better quality of life. Neuroimaging machine language 
(ML) is the application of new computational methodologies to study and interpret 
brain image data [3]. The future of this feld also looks very promising, as a break-
through in the identifcation of neurological disorders and the development of the 
individual plan for their treatment are guaranteed. 

FIGURE 2.1 Architecture of data mining neurology [2]. 
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Some applications of machine learning in neuroimaging include [4]: 

• Image segmentation: ML-based methods can be utilized for segmenting 
respective areas in MRI and CT scans to identify diseases in their early 
stages, such as Alzheimer’s or multiple sclerosis. 

• Disease classifcation: Incorporating frst principles and analysis of aspects of 
neurological disorders as features of the dataset allow machine learning mod-
els to be developed that can discern between various disorders from images 
and assign more precise recommendations for management. Patterns that 
could be identifed through brain imaging datasets could help train machine 
learning models to distinguish between various neurological disorders accu-
rately, resulting in precise diagnosis and treatment recommendations. 

• Biomarker discovery: Biomarker discovery can happen because of machine 
learning algorithms; they can carry out a detailed analysis of large data-
bases of imaging scans of the brain and fnd correlations with certain dis-
eases or conditions that are hard to detect otherwise but could be used as 
biomarkers for diagnosis of the disease at an early stage or for monitoring 
the progress of the disease. 

• Treatment response prediction: This knowledge of predicted responses to 
treatments can be captured using AI techniques such as machine learning 
models where the ability to forecast how an individual patient will respond to 
the specifc form of treatment could be determined from brain imaging. By 
scrutinizing patients’ brain images, machine learning models show predic-
tions regarding their responses to a particular therapy, thereby enabling better 
management by doctors who take into account individual patient differences. 

In terms of practical applications, based on the advances in machine learn-
ing technologies, neuroimaging studies can enhance the daily lives of patients by 
offering better diagnoses, prognoses, and treatment solutions for their diseases and 
by explaining the biological processes that contribute to neurological disorders. 
Moreover, it opened up opportunities for the invention of new technologies and 
devices for early diagnosis and status progressional for managing worse brain disor-
ders and improving the quality of life of people affected. 

2.2 NEUROINFORMATICS AND BIG DATA 

Neuroinformatics combines neuroscience, computer science, and information tech-
nology to examine the brain and its related functions. Neuroinformatics is therefore 
a feld that concentrates on developing tools as well as techniques for gathering, 
analyzing, and interpreting huge amounts of data about the brain including genetic 
information, clinical data, and neuroimages. 

Some notable examples include [5]: 

• Disease classifcation: Patterns present in brain imaging datasets may be 
able to train machine learning models to accurately distinguish between 
different neurological disorders, thereby leading to accurate diagnosis and 
subsequent treatment recommendations. 
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• Biomarker discovery: ML algorithms can analyze large-scale datasets from 
fnally in imaging scans to detect subtle patterns associated with specifc 
diseases or conditions that could act as possible biomarkers for early detec-
tion or monitoring of the progression of these diseases. 

• Drug innovation and development: Through using neuroinformatics and 
big data analytics, one can fnd potential drug targets, anticipate their 
responses to drugs, and optimize treatment approaches for neurological 
diseases. 

• Brain mapping and connectivity analysis: Neuroinformatics tools enable 
the study of brain connectivity networks as well as brain region mapping; 
it lets us know how various parts of the brain communicate and work in 
tandem. 

Therefore, if neuroscience leverages neuroinformatics along with big data, 
researchers will enhance their knowledge about the brain, improve diagnosis accu-
racy, come up with individualized treatment options, follow these methods to resolve 
related disorders, and better understand the problems that these brain-related neu-
rodiseases will pose in the future. 

2.3 COMPUTATIONAL TOOLS AND SOFTWARE 

In neuroinformatics and big data, computational tools and software are used to refer 
to the programs that help in analyzing, processing, and interpreting massive neural 
data. These tools allow scientists to: 

• Store, manage, and share their data 
• Evaluate complex brain functions 
• Interpret the results and visualize them 
• Merge different sources of data 

Some examples of computational tools and software include [6, 7]: 

• Freesurfer: Automated reconstruction and analysis of brain structures from 
MRI data 

• FSL: A comprehensive library for MRI and functional fMRI analysis 
• AFNI: fMRI data analysis and visualization software 
• NEST: Simulator for large-scale neural networks 
• BrainPy: Python library for neural data analysis and modeling 
• NeuroDebian: Neuroimaging and neuroinformatics software platform 
• OpenNeuro: Open access neuroimaging repository 

The computational tools and software applications include: 

1. Research on neurological disorders 
2. Development of a BCI 
3. Neuroscientifc discovery-making 
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4. Personalized medicine services 
5. Drug development industry 
6. AI and ML 
7. Healthcare analytics 
8. Neuroeducation (NE) and cognitive enhancement (CE) 

These computational tools thereby allow researchers to unlock insights from 
complex neural data that drive innovation within neuroscience as well as the health-
care technology sector. 

2.4 NEURAL ENGINEERING AND NEUROMODULATION 

The development of innovative technologies for understanding, interfacing, and 
modulating neural activities of the brain is what neural engineering and neuromodu-
lation involve. These disciplines are a mix of engineering principles, neuroscience as 
well as computer science, aiming to: 

• Build brain−machine interfaces (BMIs) 
• Construct neural prosthetics or implants 
• Design neuromodulation therapies 

Neural engineering and neuromodulation have the goals of [8]: 

• Restoring function in neurologically damaged individuals 
• Increasing intelligence 
• Treating mental health disorders 
• Enhancing human performance 

Neural engineers value the heterogeneity of their colleagues and seek out mul-
tiple perspectives to inform the development of their technology. The subspecialties 
are illustrated in Figure 2.2. This illustration highlights the professionals actively 
involved in developing and translating neural technology. These professionals 
include subspecialties ranging from scientists, technical experts, clinicians, and oth-
ers involved in the clinical setting. 

Applications and uses of [9, 10] neural engineering include: 

1. BCIs: providing communication, control, and interaction 
2. Neuroprosthetics: substitute or repair injured neural systems 
3. Neuromodulation therapies: for example, Parkinson’s disease, epilepsy, and 

depression treatments 
4. Neurological disorder treatment: producing new therapies for paralysis, 

Alzheimer’s disease, and stroke 
5. Cognitive enhancement: aid attention, memory building, and learning 
6. Neurofeedback training: teach self-control over brain functioning 
7. Neurological rehabilitation: boost recovery abilities and enhance plasticity 
8. Neuroscientifc research: explore brain functioning as well as behavior patterns 
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FIGURE 2.2 Neural engineers and the professional chain [8]. 

Some examples of neural engineering and neuromodulation include [11, 12]: 

1. Deep brain stimulation (DBS): electrodes that are implanted in the body 
to manipulate signals transmitted from the brain; used as a treatment for 
Parkinson’s disease, dystonia, and obsessive-compulsive disorder. 

2. Transcranial magnetic stimulation (TMS): a procedure that involves the 
use of magnets to infuence activities of desired areas in the brain to cure 
depression, anxiety, and chronic pain. 

3. BCIs: Allow patients with paralysis, neural disorders, or tetraplegia, who  
could not speak or manipulate anything, to use their minds to command 
devices and participate in social activities. 

4. Neuroprosthetics: prosthetics such as artifcial limbs and organs that could 
be operated through signals from the brain to enable those who have had 
their limbs or organs amputated or damaged to have their limbs or organs 
replaced. 

5. Neurofeedback training: forms mental and neural pathways, which increases 
attention, memory, and overall intellectual performance. 

6. Optogenetics: exploits light to manipulate granulocyte-macrophage (GM) 
brain cells, map the mind/brain, and infuence behaviors. 



 

 

 
 
 

 

 

 

 

 

 

25 Brain Challenges and Opportunities in Computational Neurology 

FIGURE 2.3 Neurotechnology developmental cycle [13]. 

7. Neural dust: innovative nanobots inserted into the human skull that record 
the brain’s signals and may cure brain-related diseases. 

8. Graphene-based BCIs: semi- and fully implantable systems that can record 
and interpret signals from the brain so that devices can be operated with a 
high degree of accuracy. 

All of these progressive technologies can bring significant change to the 
healthcare industry, act socially beneficial by positively affecting the patient’s 
standard of living, and alter the human condition for the better. Figure 2.3 
explains about the developmental cycle of the neurotechnology process. 

2.5 TOWARD PERSONALIZED MEDICINE IN NEUROLOGY 

Personalized medicine in neurology is defned as the practice of providing medical 
treatment concerning a patient’s genetic, environmental, and social individuality. 
Some key aspects include [14, 15]: 

• Genomic medicine: in its simplest form, utilizing genetic information to 
forecast susceptibility to diseases and the likely individual response to 
treatment 

• Precision neurotherapeutics: an individualized approach to treatment using 
the possibilities of pharmacogenomics to create highly specifc treatments 
for certain dysfunctions in the patient’s brain 

• Pharmacogenomics: changing or modifying the type of drugs given depend-
ing on the patient’s genetic makeup 

• BCIs: designing neural interfaces to be personalized to the point that one 
can optimize their use for communication as well as control 
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• Neuroimaging biomarkers: to develop imaging markers that would defne 
the disease early and help monitor the effectiveness of the treatment modal-
ities employed 

• Personalized neurorehabilitation: assuming individual rehabilitation 
strategies by checking with the afficted segment of the brain and typical 
demeanor 

• Lifestyle medicine: personalizing nutrition, exercise, and other aspects 
of a lifestyle according to a person’s genetic makeup and functions of 
the brain 

Applications and uses of key aspects that indicate personalized medicine in neu-
rology include: 

1. Genomic medicine: introducing genetics to help identify tendencies and 
reactions to intervention in diseases. 

2. Precision neurotherapeutics: the service provision that would entail the 
application of specialized pharmacology that would in effect be targeted 
toward treatment that in most cases is concerned with specifc aspects of a 
given patient’s brain. 

3. Pharmacogenomics: employing the reaction that occurs at the genetic 
level of an individual using pharmacogenomic and pharmacogenetic 
testing to establish which drug is appropriate for the patient or the most 
suitable dose. 

4. BCIs: methods and approaches for tailor-made neural systems. 
5. Neuroimaging biomarkers: identifying the imaging markers useful in the 

early detection of the disease or in following up those treatments or thera-
pies that are being offered to the patients. 

6. Personalized neurorehabilitation: the competency of establishing and 
passing such rehab charts due to the evaluation of brain functions and 
behavior. 

7. AI in neurology: applying AI not only in the primary inherent big data 
analysis but also in the prognosis of that concrete individual treatment 
plan. 

The concept of individualized patient healthcare professional treatment in neuro-
logical science relates to increasing the probabilities of enhanced handling, recov-
ery, and patient satisfaction with their treatment regimen tailored to suit the specifc 
needs of the patient. 

Computational neurology involves computational methods and applying math-
ematical formulations to understand and become involved briefy in model neuro-
logical processes. These methods and models offer different types of perspectives 
and tools to analyze and understand the complex dynamics of the nervous system 
from the standpoint of computational neurology. Some methods are explained in 
Table 2.1 [16]. 
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(Continued)

TABLE 2.1
Computational Neurology Methods

1. Neuronal models • Hodgkin−Huxley model: This model describes how any potential 
action in neurons is initiated and propagated. It uses a set of 
differential equations to model the membrane potential V(t), 
ionic current, and gating variables:

C
dV

dt
I V n m h Im ion ext( , , , )= − +

• Leaky integrate-and-fire (LIF) model: This is a similar model that 
describes a neuron’s membrane potential V t( ) with leakage and 
input currents:

( )= − − +C
dV

dt

V E

R
I tm

L

m

      ,

where Cm is the membrane capacitance, Iion  is the total ionic 
current, and Iext is the external current. The ionic current Iion  is 
given by:

g( ) ( ) ( )= − + − + −g g3   ,4I Nam h V E Kn V E L V Eion Na k L

where g g g,  , and Na K L are the conductance’s of sodium, 
potassium, and leak channels, respectively, and ENa, E EK L, and   

are their reversal potentials. The gating variables m h n, , and   
follow their own differential equations.  Rm  is the membrane 
resistance and EL is the resting potential. If V  reaches a threshold 
Vth, the neuron “fires” and the potential is reset.

2. Network models • Hopfield network: This type of recurrent neural network serves 
as an associative memory system. The energy function E for a 
Hopfield network with binary units can be expressed as:

∑ ∑θ= − +E w s s s
ij

ij i j

i

i i

1
2

.

• Boltzmann machine: This is a stochastic recurrent network that 
models complex probability distributions. The energy of a  
state s   is:

∑ ∑( ) = − −
<

,E s w s s b sij i j

i j

i i

i

where si  are the binary states, wij are the weights, and θi are the 
thresholds. The network seeks to minimize this energy function 
to converge to a stable state. bi are biases. The probability of a 
state is given by the Boltzmann distribution:

( ) =
−

P s
e T

Z

E s( ) /

,

where T  is the temperature and Z is the partition function.
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TABLE 2.1 (Continued) 
Computational Neurology Methods 

3. Signal processing 

4. Information theory 

5. Optimization and learning 

6. Neurodynamic 

• Fourier transform: It is used to analyze the frequency 
components of neural signals. For a signal x t( ), its Fourier 
transform X f( ) is: 

˜ 
ˆ 

2ˇ f t( ) = ( )  − j dt.X f  x t e  
−ˆ 

• Wavelet transform: Wavelet transform provides time-frequency 
representation of signals. Continuous wavelet transforms (CWT) 
of a signal x t( ) with wavelet function ̃  is: 

� 
1 t b � w a( ,b) = x t( )° ˘ − 

dt,x ˜ * �� ��ˆa a 
−� 

where a is the scale parameter and b is the translation parameter. 

• Mutual information: This measures the amount of information 
obtained about one random variable through another. For random 
variables X and Y , mutual info I X Y ) is:( ;  

p x y ( ; = ˜˜ p x y l( ) og 
( , ) 

.I X Y ) , 
p x  p y  ( ) ( )

x˙ y˙ 

• Gradient descent: This optimization method is used in training 
neural networks. For a loss function l ( )˜ , the update rule is: 

˜ ° ˆL( )˜˜ = −  t ,t+1 t 

where ὴ is the learning rate and L ˜t˝ ( ) is the gradient of the loss 
function with respect to parameters ̃ . 

• Fitzhugh−Nagumo model (FNM): This model is a simple version 
of Hodgkin−Huxley model that captures the essential dynamics 
of excitable systems: 

dV V 3 

= −  − +  V W I  
dt 3 

dW =  ( + − bW ),V a  
dt 

where V is the membrane potential, W  is the recovery variable, 
and  , ,a  and b are parameters controlling the dynamics. 

2.6 CONCLUSION AND FUTURE DIRECTION 

Computational neurology has the potential to revolutionize the felds of neuro-
science and neurotechnology by providing a deeper understanding of the brain 
and its functionalities. It uses models like mathematics to simulate neuroprogres-
sive processes. Researchers can gain insights into the underlying mechanism of 
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neurological disorders, like Alzheimer’s, Parkinson’s, and epilepsy. This knowl-
edge can be used to develop more effective treatments and interventions for these 
conditions. 

Moreover, computational neurology plays a crucial role in the development of 
BCIs, which help to improve the quality of life for individuals with severe motor dis-
abilities. Additionally, computational neurology will help to build neural prosthetics, 
such that devices will restore lost sensors and functions by directly interacting with 
the nervous system. These prosthetics can give a good change in people who are 
suffering from spinal cord injuries or any other neurological diseases. Early diagno-
sis of neurological disorders, BCIs, and neurofeedback training improve skills and 
neurostimulation therapies and drug developments and use of AI in computational 
neurology. 
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3 Challenges and 
Opportunities in 
Computational 
Neurology 

S. Vijayanand and C. Priya 

3.1 INTRODUCTION 

The human brain is one of the most complex systems in the known universe, con-
sisting of approximately 86 billion neurons that form a vast network of trillions of 
interconnected synapses [1]. This intricate biological circuitry enables our thoughts, 
perceptions, behaviors, emotions, and the very essence of consciousness itself. 
Unraveling the mysteries of how the brain processes information, learns, stores 
memories, and gives rise to the richness of human experience has been one of the 
greatest scientifc challenges humanity has undertaken. Computational neurology, 
also known as computational neuroscience, is an interdisciplinary branch of science 
that integrates knowledge of neuroscience, computer science, physics, mathemat-
ics, and other sciences to develop and utilize computational models and simula-
tions in studies on the structure and functions of the brain and nervous system [2]. 
Computational neurology researches the basic principles and mechanisms driving 
neural computation, cognition, and behavior by incorporating insight from strong 
computational methodologies and a wide variety of disciplines. During the last few 
decades, the exponential increase in computing power was complemented by rapid 
advances in neuroimaging technologies and access to large-scale neural data to bring 
computational neurology to the forefront in brain research. Sophisticated computa-
tional models and simulations have provided insight into the complex dynamics of 
neural circuits, the representation of information in the brain, and neural correlates 
for several cognitive functions previously unmatched [3]. 

Yet, along with these impressive achievements, the key challenges to computa-
tional neurology come from the complexity of the brain and from the limitations 
of models and methodologies at our disposal. Activities of the brain span a very 
wide range of spatial and temporal scales, from the nanoscale of molecular and 
ionic interactions to the macroscopic scales of the organization of brain regions and 
networks [4]. Capturing this multiscale nature of brain dynamics within a unifed 
computational framework still constitutes one of the major challenges. Besides, the 
brain is highly plastic and able to adapt; it keeps readapting and reorganizing its 
neural circuits due to environmental input, learning, and experience throughout its 
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life. This dynamic and ever-changing nature of neural computation, in turn, presents 
another level of diffculty in developing computational models able to represent and 
account for it with precision. 

This chapter will touch on some of the most important challenges pending in 
computational neurology, including, but not limited to, the problem of the complex-
ity of the brain; the limitations of current data acquisition techniques; issues with 
model validation; the integration of disciplines and methodologies; and the inter-
pretability of complex computational models. Moreover, we shall discuss exciting 
opportunities and possible future directions awaiting us as we continue to expand 
the boundaries of brain research using computational approaches. In returning to 
these challenges and capitalizing on the newest achievements in machine learning, 
artifcial intelligence, neuromorphic computing, and brain−computer interfaces 
(BCIs), computational neurology could evoke nothing but breathtaking discover-
ies that may not only substantially advance the understanding of the brain but also 
enable the development of radically new applications in such areas as precision 
medicine, enhancement of cognition, and building smart systems inspired by bio-
logical intelligence [5]. 

What is now required is interdisciplinarity, sharing not only knowledge and 
insight but embedding these various standpoints and methodologies within one great 
endeavor. It is only by serious effort across disciplines that the secrets of the brain 
will be unwoven and the full power of computational neurology unlocked. The major 
challenge in the feld of computational neurology is to take care of the huge complex-
ity of the brain along with the various spatial and temporal scales. The brain contains 
almost 86 billion neurons at the microscale, with each making several thousand 
connections with other neurons through synapses. Indeed, the work from this dense 
interconnectedness gives rise to the amazing ability of information processing by the 
brain. Similarly, continued development in computational models is put into practice 
in order to simulate the dynamics of the brain from higher to fner scales. The recent 
editorial publications published bring out how cognitive function−simulating mod-
els and mental disorder−simulating models facilitate grasping not only normal brain 
activities but also pathological states like schizophrenia and depression [6]. However, 
even the most negligible percentage of neural circuitry in the brain involves compu-
tationally intensive tasks to model and simulate. A single neuron itself is a highly 
complex computational machine that integrates and processes incoming signals 
through detailed electrochemical dynamics. The modeling of behavior by billions of 
interacting neurons, all singular in their properties and again singularly connected 
with others, quickly becomes computationally infeasible for even the most powerful 
supercomputers. 

The brain also acts over a huge range of spatial scales, from the nanoscale interac-
tions of molecules and ions to the macroscopic organization of brain regions and net-
works. It is a big challenge to capture the multiscale nature of brain dynamics using 
current computational models, which tend to focus on one particular scale or level 
of abstraction. The temporal complexity of brain activity also poses a formidable 
challenge. Neural computations occur across a wide range of timescales, from the 
millisecond dynamics of action potentials to the slower processes of synaptic plastic-
ity, learning, and memory consolidation that unfold over hours, days, or even years. 
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Bridging these disparate timescales within a unifed computational framework is an 
area of active research. 

3.2 CHALLENGES IN COMPUTATIONAL BRAIN MODELING 

3.2.1 COMPLEXITY OF NEURAL NETWORKS 

The human brain encompasses approximately 86 billion neurons, each form-
ing connections (synapses) with thousands of other neurons in incredibly dense, 
recursively networked architectures [7]. The total number of synapses is esti-
mated around 100−500 trillion. This vast, heterogeneous connectivity gives rise 
to the brain’s prodigious information processing capabilities. However, the sheer 
combinatorial complexity makes modeling entire brain networks a grand chal-
lenge for computation. Current neural simulations are highly simplifed com-
pared to biological reality, often abstracting away much of the intricate biological 
details [8]. Capturing the dynamic, nonlinear interactions of such an immense 
network is extraordinarily diffcult, requiring massive computational resources 
and novel modeling approaches. Even modeling a small fraction of the brain’s 
neural circuitry is a formidable task. For instance, the Blue Brain Project’s recon-
struction and simulation of a rat cortical microcircuit, comprising around 31,000 
neurons and 37 million synapses, required a supercomputer and took years of 
effort. Scaling such detailed simulations to the level of the entire human brain, 
with its billions of neurons and trillions of synapses, remains an immense com-
putational challenge. 

3.2.2 BRIDGING MULTIPLE SCALES AND MODALITIES 

Brain functions and neural coding emerge across multiple spatial and temporal 
scales, from molecular events within synapses, to neuronal membrane potentials, to 
network-level oscillations, to systemwide cognitive functions. Bridging these scales 
in unifed computational models is extremely complicated since each scale involves 
different types of data, theories, and modeling approaches. For example, biophysi-
cal models simulate neurons as multicompartment structures based on cable theory, 
while cognitive models use systems of interacting units approximating brain areas or 
functions. Integrating bottom-up molecular data with top-down cognitive constraints 
in a neurobiologically constrained manner is a key challenge [2]. Additionally, the 
brain exhibits a wide range of dynamics across different timescales, from the mil-
lisecond dynamics of action potentials to the slower processes of synaptic plastic-
ity, learning, and memory consolidation that unfold over hours, days, or even years 
[9]. Capturing these disparate timescales within a unifed computational framework 
remains an open challenge in the feld. 

3.2.3 LIMITATIONS OF NEURAL DATA 

Despite signifcant development in multimodal neuroimaging and neural recording 
techniques using fMRI, PET, EEG, calcium imaging, and multielectrode arrays, at 
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almost all scales, there are gaps in neural data acquisition both in terms of spatial 
and temporal resolutions. Most data are a small snapshot of the activity of the brain 
rather than the complete information fow at any instant of time. Techniques are 
typically biased either to the particular spatial scale or to a particular temporal scale; 
for instance, functional magnetic resonance imaging (fMRI) has excellent spatial 
resolution with poor temporal resolution, while electroencephalography (EEG) has 
excellent temporal resolution with poor spatial resolution. The invasive nature is also 
the main limit to most neural recording methods, constraining the extent and dura-
tion of data collection, particularly in human subjects. Lacking proper data coverage 
in a multiscale and multimodal setting places tremendous challenges toward con-
structing comprehensive multiscale neural models able to represent complex brain 
dynamics correctly. But the key point to observe is that current neuroscience meth-
ods are mostly bound to a restriction of measurement correlate, not directly observ-
ing the activity of single neurons and their connections themselves, using blood fow 
changes or electrical potentials as proxies. This presents a barrier in establishing 
accurate computational models that can be true representatives of the mechanisms 
beneath [10]. 

3.2.4 DATA ACQUISITION CHALLENGE 

Another important challenge in computational neurology is the issue of high-quality, 
comprehensive data on the structure and function of the brain. While modern tech-
niques of neuroscience, including fMRI, EEG, BCI, and multi-electrode arrays, have 
provided unparalleled insight into the activity of the brain, all these methods still 
suffer from overwhelming limitations. Several challenges remain in the development 
of BCIs. Such challenges may involve further real-time neural signal processing, 
enhancing the accuracy and reliability of BCI systems, and improving user comfort 
for extended use. While neuroimaging techniques like fMRI offer very good spatial 
resolution, allowing the researcher to spatially locate brain activity with high spatial 
precision, their temporal resolution is rather poor, making it diffcult or impossible 
for them to capture rapid dynamics of neural activity occurring on a millisecond tim-
escale. In contrast, techniques such as EEG and magnetoencephalography (MEG) 
provide excellent temporal resolution but poor spatial resolution, which makes it 
very diffcult to spatially locate sources of activity in the brain with either high preci-
sion or accuracy [11]. Moreover, most current neuroscience techniques remain indi-
rect measures in that they usually record correlates of neural activity, such as altered 
blood fow (fMRI) or electrical potentials (EEG/MEG), rather than directly observ-
ing the activity of individual neurons and their connections. This is a formidable 
obstacle to the creation of realistic computational models that can truthfully capture 
the real neural mechanisms at a cellular and synaptic level [12]. 

Another major challenge is to obtain a comprehensive structural dataset on the 
intricately interconnected neural circuitry of the brain. Although techniques such as 
diffusion tensor imaging (DTI) and tractography give some insights into the struc-
tural connectivity at large scales, they often remain at too low a resolution and speci-
fcity to pinpoint exactly which neurons are connected with which [13]. In addition, 
these techniques cannot easily capture the dynamics of structural plasticity that are 
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so important in processes like learning and memory formation. New and better data 
acquisition methodologies will become increasingly important as computational 
models further increase in complexity and require data at higher resolution across 
scales and modalities. Several new technologies − nanoelectronics, optogenetics, 
and molecular sensors − may overcome some of these limitations by allowing more 
direct and high-resolution recordings of neural activity and connectivity [14]. This 
might include nanoelectronic devices, like nanoelectrode arrays and nanowire feld-
effect transistors, which could potentially record the activity of single neurons or 
even synapses with high spatial and temporal resolution. Another tool known as 
optogenetics involves the use of genetically engineered light-sensitive proteins for 
selectively controlling the activity of specifc neurons and thus offers a powerful tool 
for the investigation of neural circuits and the study of causal relationships between 
neural activity and behavior. Besides, advanced molecular sensors and imaging tech-
niques have been reporting how to observe biochemical processes within neurons 
and synapses at high spatial and temporal resolution with techniques such as fuo-
rescence resonance energy transfer (FRET) and bioluminescence resonance energy 
transfer (BRET), among others [15, 16]. 

3.2.5 THE MODEL VALIDATION CHALLENGE 

Even with the most sophisticated computation models and best data, validation of the 
veracity and predictive capability of such models remains one of the major challenges 
in the feld of computational neurology. Unlike most other scientifc disciplines, it is 
often impossible or diffcult to observe and directly measure the underlying modeled 
process in the brain. While optogenetics and multi-electrode arrays are two popu-
lar experimental techniques for obtaining data on model validation, they usually 
remain confned to particular parts of the brain or specifc neural circuits and thus 
lack generalization to the complex whole-brain dynamics. Additionally, numerous 
models involve simplifying assumptions or abstractions, which may not accurately 
capture all the fner details of biological complexity in neural systems [17]. The lack 
of ground truth data and the inherent complexity of the brain make it diffcult to dis-
cern whether a computational model is correctly instantiating the underlying neural 
mechanisms or simply reproduces the observed behavior via other mechanisms or 
compensatory dynamics. This problem is extremely concerning in the case of the 
brain’s large-scale models and simulations because a great number of parameters 
and interactions could render disentanglement hard for the actual causal relation-
ships. Besides, the brain is highly plastic; it structurally changes its neural circuitries 
based on environmental inputs, learning, and experience continuously. This dynamic 
nature of the working of the human brain adds another layer of complicating factors 
in the validation of computational models. Since the brain itself is so dynamically 
changing, the models themselves need to be updated and fne-tuned continuously to 
keep pace with all the changes that are happening in the neural structure and func-
tion [18]. This can be attempted by developing fner methods of model validation 
and testing, which may include the use of synthetic data or virtual brain models as 
ground truth references. The improvement of experimental techniques, including 
closed-loop optogenetics and all-optical electrophysiology, might actually provide a 
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completer and more accurate dataset from which to validate computational models 
at all scales [19]. 

Another promising direction could be the elaboration of more interpretable and 
explainable computational models that can provide insight into the underlying mech-
anisms and causal relationships, rather than simply reproducing the observed behav-
ior. Approaches from explainable artifcial intelligence (AI) could be adapted and 
applied to the models in computational neurology, allowing researchers to gain more 
insights and to validate the inner workings of such complex systems [20]. Finally, 
solving the model validation problem will be a multifaceted approach: better experi-
mental techniques, better computational methodology, better interpretability, and 
further knowledge of biological principles and constraints of neural computation 
[12]. Such work will be accomplished mainly through interdisciplinary collaboration 
and the integration of a variety of perspectives and methodologies. 

3.2.6 THE INTEGRATION CHALLENGE 

Computational neurology is a very broad feld, borrowing principles and methods 
from neuroscience, computer science, physics, mathematics, engineering, and many 
other disciplines. Whereas this interdisciplinary nature is a clear strength, enabling 
the combination of various points of view and tools, it also implies a number of 
complications concerning communication, collaboration, and integration of varied 
theoretical frameworks and modeling approaches. The barriers to successful com-
munication and knowledge transfer are set by complex disciplinary terminologies, 
conventions, and conceptual frameworks [8]. For example, “information process-
ing” may mean quite different things to a computer scientist and to a neuroscientist, 
depending on what might be inferred or assumed from that term − a potential source 
of misunderstanding or confict. 

Other modeling approaches and techniques may be more appropriate for specifc 
aspects of brain function or for specifc spatial or temporal scales. A further chal-
lenge is to integrate such various approaches into one coherent computational frame-
work. For instance, biophysically detailed models can describe activities in single 
neurons or small circuits very well, but abstract models may be more suitable when 
studying large-scale brain networks or cognitive functions [21]. Overcoming integra-
tion challenges requires effective collaboration and sharing of knowledge between 
researchers from various disciplines. Interdisciplinary training programs, confer-
ences, and research initiatives can help build mutual understanding and enable the 
exchange of ideas and methods between disciplines. 

3.2.7 THE INTERPRETABILITY CHALLENGE 

Whereas models of the brain computationally grow in their complexity and 
sophistication, interpretations and understandings of the inner mechanisms and 
outputs from such models are all becoming increasingly diffcult. Indeed, most of 
the currently used techniques in machine learning and AI − such as deep neural 
networks − are often criticized for being “black boxes” whose inner workings are 
hardly explainable and interpretable in terms of mechanisms. In the setting of 
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computational neurology, interpretability is not only key to furthering our com-
prehension of the brain but also in the validation of accuracy and biological plau-
sibility in computational models. No matter how good a model has performed 
in the capture of real brain activity or behavior, failing to give insights into the 
neural mechanisms means such a model will carry limited value in the improve-
ment of our understanding of the brain [22]. 

Interpretation and explanation of the inner workings of such complex compu-
tational models involve the development of techniques and frameworks; these are 
indeed active areas of research in interpretable machine learning and explainable AI. 
At the same time, all this faces great diffculties in application to the domain of com-
putational neurology because of its complexity and the multiscale nature of brain 
dynamics [3]. Overcoming the interpretability challenge will require advances in 
model interpretability techniques themselves, as well as deeper insight into the bio-
logical principles and constraints that determine neural computation. Such progress 
will be dependent on many collaborations between computational neuroscientists, 
machine learning researchers, and neuroscientists. Techniques like lateralized readi-
ness potential (LRP) and attention maps have already seen some success in interpret-
ing the representations learned by deep neural networks, and such techniques can be 
adapted for models derived from computational neurology [23]. Another next step 
might be toward developing more interpretable and biologically plausible computa-
tional models, based on either the principles of predictive coding or energy-based 
models, when more transparently and explainable furthering the framework through 
which neural computation is studied. 

3.2.8 KNOWLEDGE GAPS IN NEURAL THEORY 

Despite this, many open questions remain with respect to our theoretical under-
standing of neural coding, learning, and memory formation among other fun-
damental neural processes. The many frameworks, including but not limited to 
connectionism, dynamical systems, Bayesian coding, and others, speak to these 
issues from supplementary perspectives without any unifying theory. This is a 
particularly hard procedure in linking higher-order cognitive functions with their 
biophysical neural mechanisms. Indeed, now more than ever, reliable simulations 
of neural phenomena across multiple scales and modalities call for robust gener-
alizable computational frameworks incorporating empirically validated theories. 
For example, although much is now known about the biophysical mechanisms 
contributing to synaptic plasticity and the cellular basis of learning and mem-
ory, the translation of these low-level processes into a coherent theory capable 
of accounting for complex cognitive functions such as reasoning, decision-mak-
ing, and language remains an open challenge [24]. Similarly, understanding how 
information is represented and processed in distributed neural networks, and how 
those representations give rise to conscious perception and subjective experience, 
remains rudimentary. Likewise, understanding how information is represented 
and processed in the brain, particularly within distributed neural networks, along 
with how those representations give rise to conscious perception and subjective 
experience, remains undeveloped thus far [25]. 
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3.2.9 COMPUTATIONAL SCALING CHALLENGES 

Although strong computing power and technologies such as GPU acceleration enable 
more complex neural simulations than were possible in the past, modeling the whole 
human brain at scales approximating biological reality is far from possible using 
currently conceivable methods. In contrast, a biophysically detailed simulation of the 
whole human cortex − 16 billion neurons with thousands of compartments each − 
may well require an exascale supercomputer with unparalleled computation and 
memory. Novel computational paradigms driven by the neural architectures them-
selves may well be called for in naturalistic modeling of whole-brain circuitry. One 
of the key challenges in this regard is the immense complexity and heterogeneity 
of neural circuits, which exhibit a vast range of cellular and molecular diversity, as 
well as intricate spatial and temporal dynamics. Capturing this complexity in a com-
prehensive computational model requires not only massive computational resources 
but also a deeper understanding of the organizational principles and computational 
motifs that govern neural information processing [26]. 

3.3 OPPORTUNITIES AND APPLICATIONS 

Despite the immense challenges, computational neurology is opening up exciting 
opportunities and applications that are propelling the feld forward at a rapid pace. 
This section covers some of the key areas of progress and impact. 

3.3.1 NEXT-GENERATION BRAIN MAPPING AND MODELING INITIATIVES 

Major scientifc efforts are presently made to develop ultra-high-resolution maps and 
computational models integrating multiscale multimodal data about brain structure 
and dynamics. The latter will, for example, digitally reconstruct and simulate the 
entire human brain down to the molecular level. The Human Brain Project is devel-
oping a research infrastructure integrating neuroinformatics, brain simulation, and 
high-performance analytics to advance brain science, and computing projects like 
these drive innovation in data management, visualization, and modeling frameworks, 
and simulation at unprecedented scales. These large-scale initiatives of brain map-
ping and modeling provide much-needed insight into the organization and function 
of the human brain but also serve as test beds in developing novel techniques and 
computational technologies. For example, the Blue Brain Project has pioneered the 
use of highly optimized simulation algorithms and hardware accelerators to enable 
effcient simulations of large-scale neural circuits [27]. 

3.3.2 COMPUTATIONAL DISEASE MODELS AND THERAPEUTICS 

Computational models, by simulating the neural underpinnings of various brain 
disorders, such as Alzheimer’s, Parkinson’s, epilepsy, stroke, and psychiatric con-
ditions, are becoming indispensable tools for understanding disease mechanisms, 
identifying biomarkers, therapy screening, and rationalizing specifc treatment 
strategies for each individual [28]. The models linking molecular pathways to 
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neural circuits and impairments in cognition could be applied further to devise 
targeted therapeutic interventions, from new medicinal treatments to protocols for 
neural stimulation to cognitive remediation approaches. Computational models 
have been applied, for example, to explore how various genetic and environmen-
tal risk factors affect the course of development and progression of Alzheimer’s 
disease, by providing insight into the underlying pathological mechanisms and 
possible therapeutic targets. For instance, in epilepsy, the use of computational 
models has been vital in identifying seizure generation and spreading command-
ing processes. These have contributed to better ways to forecast seizures, prevent 
them, or stop them [29]. 

3.3.3 BRAIN-INSPIRED ARTIFICIAL INTELLIGENCE 

Insights from computational neurology are inspiring new directions in AI by devel-
oping algorithms and architectures that better approximate the computational 
principles of the brain. Neuromorphic computing aims to build energy-effcient, 
fault-tolerant, and adaptive neural networks modeled on biological neural circuits 
and dynamics. Neuroprosthetic devices could enhance or restore sensory, motor, and 
cognitive capabilities by directly interfacing with the nervous system. Deep learn-
ing methods loosely inspired by neural circuits are achieving remarkable perfor-
mance in machine learning tasks, with biology suggesting pathways toward more 
human-like reasoning, unsupervised learning, and transfer learning capabilities. For 
example, the development of attention mechanisms in deep learning was inspired by 
the selective attention processes observed in the brain. Similarly, the feld of meta-
learning, which aims to develop systems that can quickly adapt and learn new tasks, 
draws inspiration from the principles of synaptic plasticity and brain reorganization. 
Integrating neuroscience principles into AI development is crucial for advancing AI 
beyond current limitations. It introduces the concept of the “embodied Turing test,” 
which focuses on creating AI systems capable of interacting with their environments 
in ways similar to animals. By mimicking biological sensorimotor and cognitive 
abilities, NeuroAI could lead to more generalizable and robust AI systems. This shift 
emphasizes evolving AI that can learn and adapt autonomously, inspired by how the 
brain naturally processes information [30]. 

3.4 NEUROTECHNOLOGY BREAKTHROUGHS 

With improvements in neural data acquisition and increasingly biologically realistic 
brain simulations, a new era of neurotechnology breakthroughs is within prospect. 
Direct neural interfaces such as BCIs form a new paradigm that allows devices to 
be directly controlled by neural signals; it may give patients with sensory or motor 
impairments a way to recover lost abilities. Computational models play a crucial role 
in the extraction of meaningful signals from neural activity and translating those into 
control signals. Neural prosthetics, including artifcial retinas and cochlear implants, 
will restore vision, hearing, and other senses or motor functions to individuals. 
Neurotechnology will commercially enable brain-controlled interfaces in gaming, 
computing, and more. However, major challenges remain to be addressed regarding 
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biocompatibility and long-term stability and in developing effective decoding algo-
rithms and control strategies for these neurotechnology. 

3.5 ETHICAL CHALLENGES 

While the opportunities brought about by computational neurology are great, the 
increased capability for monitoring and decoding and the possibility to manipulate 
neural activity bring up signifcant ethical challenges. Systematic frameworks need 
to be introduced for the protection of neural data against privacy and security threats. 
Enhancement of cognitive capabilities also poses interesting philosophical issues 
regarding the modifcation of the frontiers of human characteristics and concerning 
possible coercion or unfair advantage. Above all, there will be proactive governance 
and regulation for emerging neurotechnologies, whether that be for military or con-
sumer exploitation. As integration with the brain becomes more feasible, new human 
rights may have to be established in regard to cognitive liberty and mental privacy [31]. 
What is needed are ethical guidelines that can ensure responsible development and 
fair access to neurotechnological capabilities. Interdisciplinary collaborations among 
neuroscientists, ethicists, policy makers, and other stakeholders are essential in negoti-
ating these complex ethical issues and ensuring that neurotechnologies under develop-
ment and deployment align with the values and priorities of society [32]. 

3.6 OPPORTUNITIES AND FUTURE DIRECTIONS 

Despite the signifcant challenges facing computational neurology, the feld also 
presents exciting opportunities and potential for transformative discoveries. With 
ever-increasing computational power, continuing data acquisition capabilities, and 
improving modeling techniques, the breakthroughs toward understanding of the 
brain and neural computation are really at hand. One of the most promising areas of 
research involves the development of large-scale, biologically realistic simulations of 
the entire brain or signifcant parts of it. Projects like the Human Brain Project and 
the BRAIN Initiative in the United States are pursuing this ambitious goal by capi-
talizing on the most recent advances in high-performance computing, neuroimaging, 
and data integration. 

It will likely be many years, possibly even decades, before simulation of the 
whole human brain at the level of individual neurons and synapses becomes possible. 
However, even models of more modest size − that is, smaller brain areas or circuits − 
could have great value in illuminating the principles of neural computation and 
emergent properties of complex neural networks. It is exciting to see computational 
neurology come of age in concert with two other emerging felds: neuromorphic 
computing and BCIs. Neuromorphic computing is engaged in the design of hardware 
and software systems powered by the architecture and computational principles of 
the brain, with the prospect of more energy-effcient and powerful computational 
paradigms. 

On the other hand, BCIs try to create a way for the brain to communicate with 
external devices directly and thus help people with disabilities to control some 
assistive technologies or even restore some lost sensory and motor functions. 
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Computational neurology can help build precise models of neural activity and, for 
these applications, decoding algorithms. Equally important, the integration of com-
putational neurology with disciplines like machine learning and AI opens exciting 
possibilities toward the advancement of knowledge in intelligence and cognition. 
Building computational models with the ability to simulate or even surpass human-
level performance on specifc cognitive tasks may yield valuable insights into the 
neural mechanisms underlying these various abilities. 

However, it is critical to remember that while artifcial neural networks and 
other machine learning models are sometimes inspirations and thus very handy in 
attempts to study the brain, they are after all simplifed abstractions and need not 
provide all the rich complexity and biological constraint of real neural systems. The 
challenge then lies in determining what computational principles are shared between 
AI and biological intelligence but taking into account the unique characteristics and 
constraints pertinent to each. Other promising directions for computational neurol-
ogy include personalized brain modeling and simulation: individualized models and 
simulations particular to a given patient or experimental participant. Now research-
ers could integrate detailed neuroimaging, genetic, and other individual-specifc data 
to create highly accurate computational models of a person’s unique brain structure 
and function. 

Personalized models of the brain could have many applications in precision medi-
cine − simulation and prediction of different treatments or interventions and their 
outcomes on the individual’s brain. They will also contribute to elaborating neuro-
feedback or stimulation therapies targeted at specifc pathologies, including depres-
sion, anxiety, or chronic pain. In addition, personalized brain models might also 
provide unparalleled research tools, allowing scientists to investigate the impact of 
specifc genetic variations, or even various lesions or other individual differences, on 
neural computation and behavior in silico. However, developing personalized mod-
els requires serious development in data acquisition and integration and modeling 
techniques alone; not less important is addressing ethical and privacy concerns about 
the collection and use of sensitive personal data. 

3.7 CONCLUSION 

Computational neurology stands at the forefront of our quest to know about the 
brain, arguably one of the most complex and fascinating systems in the known 
universe. While the challenges facing this feld are enormous, ranging from sheer 
complexity of the brain to limitations in current data acquisition and modeling tech-
niques, the potential rewards are immense. This type of advance in the creation of 
accurate and informative computational models of the brain − a logical next step 
in the advance of our core understanding of neural computation and the biological 
basis for cognition − would unleash transformative applications assured by brain-
computer interfaces, neuromorphic computing, precision medicine, and the design 
of AI systems inspired by the principles of biological intelligence. Overcoming the 
challenges will require a concerted, interdisciplinary effort involving neurosci-
entists, computer scientists, engineers, mathematicians, and experts from various 
other domains. Fostering collaborations, knowledge sharing, and the integration 
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of disparate methodologies and theoretical frameworks will be crucial for making 
signifcant progress. Additionally, continued investment and innovation in cutting-
edge technologies for data acquisition, high-performance computing, and advanced 
modeling techniques are essential to push the boundaries of what is computation-
ally feasible. As our computational capabilities and empirical understanding of the 
brain continue to grow, we may witness profound breakthroughs that could reshape 
our conception of intelligence, consciousness, and the fundamental nature of our 
existence as thinking, feeling beings. The development of biologically inspired AI 
systems that can match or even surpass human cognitive abilities could have pro-
found implications for felds ranging from healthcare and education to scientifc 
discovery and technological innovation. This, in turn, may lead to revolutionary 
neurotechnologies that can enhance human capabilities, restore lost functions, or 
cure neurological conditions by accurately monitoring, decoding, and potentially 
manipulating neural activity. Along with responsible development, fair distribution, 
with increasingly powerful technologies, protection of individual privacy, auton-
omy, and cognitive liberty is to be pursued. Fundamentally, the quest to unlock the 
brain through computation is not a purely scientifc one but also highly existential − 
to understand computational principles at the core of our very own minds and con-
sciousness is to be closer to fundamental insights into the nature of existence, the 
origins of subjective experience, and where we ft in the universe. While daunting 
challenges line the road ahead, the possible rewards make computational neurology 
a frontier worth exploring, for perhaps it contains keys to unlock some of the deep-
est secrets of our universe and ourselves. 
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4 Ethical Issues in 
Neurodisorder Diagnosis 
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4.1 INTRODUCTION 

Among the many ways that medical artifcial intelligence (AI) may enhance neu-
rological procedures are by helping patients get diagnosed, actively treating their 
symptoms in between in-person consultations, anticipating and averting likely fare-
ups, and more. Differential symptoms are displayed by people with a variety of 
mental and behavioral disorders. Verbal output, whether spoken or written, body 
language, tone of voice, and facial expressions can all be used to diagnose a patient. 
There are many moral and legal issues that medical sector must deal with. While AI 
has made great strides in society and may lead to better treatment results, not all cul-
tures can afford it [1]. The most recent technology is still unavailable in many devel-
oping and low-income countries. Not to mention, there are a lot of concerns we have 
to deal with, such moral dilemmas, data privacy and protection, informed consent, 
societal divides, medical advice, empathy, and compassion. The Indian Committee 
of Clinical Exploration (ICMR) has planned moral direction records every once in a 
while, for advancing moral and top-notch research in India. Experts and ethics com-
mittees are expected to adhere to these guidelines [2]. These guidelines aim to offer 
guidance without restricting innovation or suggesting specifc diagnostic or thera-
peutic approaches for diseases, but to facilitate safe and effective use of AI technolo-
gies in biomedical research and healthcare delivery. With the broad implications of 
AI-based technologies in healthcare, these guidelines apply to health professionals, 
technology developers, researchers, entrepreneurs, hospitals, research institutions, 
organization(s), and laypersons who wish to use health data for biomedical research 
and healthcare delivery using AI technology and techniques. AI is continuously 
using for the development of “smart” healthcare devices, which have the ability to 
learn diffcult patterns from big and complex datasets like neurodisorders and many 
other mental diseases. Virtual health assistants, tailored medications, and smart dig-
ital tablets are some AI-driven computer programs that will assist primary care doc-
tors in more precisely identifying patients who need special treatment and care and 
in developing protocols that are tailored to each patient. AI can be used by doctors 
to take notes, evaluate patient conversations, and upload necessary data straight into 
electronic health record systems [3]. But AI may be abused when applied incorrectly 
due to biases and other factors. So, AI in smart healthcare creates a number of new 
ethical questions. 
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FIGURE 4.1 Flowchart depicting different ethical policies in healthcare. 

The fowchart in Figure 4.1 makes it evident that there are mainly legal policies 
and organizational policies. Then there are some ethical practices: 

1. Data management, which includes data collection, data protection, data 
cleaning, and data reporting. 

2. Model development includes model training, model verifcation, and model 
reporting. 

3. Deployment and monitoring includes stakeholder engagement and user-
centered design, updates and ongoing validation, and supervision and auditing. 

4.2 RELATED WORKS 

In the beginning of healthcare research, every study in health and biomedical sci-
ence, whether it uses AI or traditional approaches, must follow fundamental ethical 
rules: respect for individuals (autonomy), promoting well-being (benefcence), avoid-
ing harm (nonmalfeasance), and fairness in distribution (distributive justice). Each 
rule aims to guarantee the safeguarding of the respect, rights, safety, and welfare of 
both the community and the individuals involved. These basic principles have been 
broadened into 12 overarching principles in the ICMR National Ethical Guidelines, 
2017 [2]. 

The primary classifcation of the literature review is depicted in Figure 4.2. 
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FIGURE 4.2 Primary classifcation of the literature review [1]. 

There are ten ethical principles in Figure 4.3, which shows different issues spe-
cifc to AI for health. 

These principles are: 

• Autonomy: Utilization of AI in healthcare can improve patients’ treatments 
more effciently. Such a system has the capacity to operate on its own and 
weaken human independence, putting the power of making decisions into 
the hands of machines. Humans ought to possess the entire management 
of the AI-driven healthcare system. AI technology must always respect the 
autonomy of the patient. 

• Data privacy: AI technology must guarantee the privacy and protection 
of personal data in every phase of growth and implementation. Having the 
trust of everyone is important for all stakeholders, such as healthcare recip-
ients, who are concerned about safety and security. Data privacy should 
focus on stopping unauthorized entry, alteration, or deletion of personal 
information. AI can be used to support individual needs, but it should not 
impose excessive limitations on a person’s real or perceived freedom. 

• Accountability and liability: Accountability is defned as the responsibility 
of a person or group to take responsibility for its actions, be accountable 
for its activities, and present the outcomes in a clear and easily understand-
able way. AI technologies are designed to be implemented in the healthcare 



 

 

 

48 Computational Intelligence Algorithms 

FIGURE 4.3 Objectives of ethical principles in neurodisorder research of AI. 

industry and need to be prepared for examination by relevant authorities at 
any given moment [4]. AI technologies need to go through routine internal 
and external assessments reviews to guarantee their peak performance. It is 
necessary to make these audit reports accessible to the public. 

• Trustworthiness: Reliability is the most sought-after attribute of a prog-
nostic tool for utilization in AI healthcare. Clinicians must develop trust in 
the tools. AI technologies also utilize the same approach. To successfully 
utilize AI effectively, clinicians and healthcare providers should possess a 
straightforward, organized approach and a reliable method to evaluate the 
credibility and dependability of AI technologies. 

• Validity: AI technology in healthcare needs to go through thorough clinical 
and feld validation prior to being used on individuals. These are crucial 
in order to guarantee safety and effectiveness. The AI-based algorithms’ 
deviation could be increased because of variations in the datasets utilized to 
train AI algorithms. When AI technology has an infuence on every person 
or medical facility, there should be a well-functioning system for receiving 
feedback for implementing essential changes. 
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• Nondiscrimination and fairness: To avoid biases and inaccuracies in the 
algorithms and guarantee accuracy In order to maintain quality, it is nec-
essary to adhere to some principles. Inaccuracies and biases can lead to 
less than optimal or faulty results [5]. External, independent algorithmic 
audits of AI technologies and ongoing evaluation of feedback from end-
users should be conducted to reduce errors and prejudices. The developers/ 
researchers working on AI must recognize and consider any biases present 
and ought to address the steps that are needed to fx them. 

• Optimization and data quality: AI is a technology that relies heavily on 
data, and its results are largely determined by that data. The information 
is utilized to train and test AI. Data bias is seen as the primary danger to 
data-focused technologies such as AI for the purpose of maintaining good 
health. It is important to exercise due diligence to verify the quality of the 
“training data.” 

• Accessibility and equity: Utilizing computers for both progress and imple-
mentation of AI, the presence of a broader infrastructure is necessary for 
the widespread implementation of healthcare technologies. AI developers 
and authorities must ensure fairness in how AI technology is distributed. 
Organizations are required to strive to offer equal chances and accessibility 
to AI technology within various user demographics [6]. The accessibility 
of these technologies for underprivileged populations that are socially and 
economically disadvantaged should be the focus of AI developers and other 
stakeholders. 

• Risk minimization and safety: It is the responsibility of all stakeholders to 
ensure participant safety engaged in the creation and implementation of 
AI technology. Patients/participants must be protected, with their dignity, 
rights, safety, and well-being of topmost importance. Strong control mecha-
nisms are essential to avoid unintentional or intentional misuse. Having 
secured systems and software is crucial and necessary due to the sensitive 
data in the healthcare industry. 

• Collaboration: AI technology in healthcare contexts suffers from a severe 
lack of confdence. More than 60% of patients, according to recent surveys, 
don’t trust AI in healthcare. This mistrust stems from worries about data 
privacy, possible biases, and the opaqueness of AI decision-making pro-
cedures. Thus, the moral and societal responsibility of using AI ethically 
transforms it from a purely technical task. 

Integrating AI into every part of medical systems looks diffcult and not reach-
able. Medical robots and humans may not progress at the same speed in upcom-
ing years because of the unique emotions that humans have. It is impossible for 
doctors and other healthcare professionals to communicate with or take advice 
from other healthcare professionals through robotic systems. Nevertheless, it 
appears unlikely that patients will prefer “machine−human” to “human−human” 
medical interactions [7]. The recovery of patients will be signifcantly infuenced 
by the compassionate and empathetic care that medical professionals must pro-
vide. Achieving this task is not feasible with artifcial doctors and nurses. When 
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patients engage with robotic medical professionals, they may not show empathy, 
courtesy, or proper conduct due to the machines’ absence of human traits such as 
compassion. One of the key disadvantages of AI in the feld of medicine is this. 
AI is widely used in healthcare [8]. Some examples are booking appointments 
online, checking in online at hospitals, converting medical documents into digital 
format, sending reminders for follow-up appointments and vaccinations, calculat-
ing medication dosage, and issuing alerts about possible side effects of combining 
medications. 

4.2.1 ADVANTAGES OF INCORPORATING AI IN NEURODISORDER 

There are many advantages to integrating AI into healthcare, including revolution-
izing patient care. AI-enabled applications, chatbots, and interfaces allow virtual 
health assistants to provide individualized services. The workload for healthcare 
providers is lessened by these digital assistants, which help with vital sign moni-
toring, medication reminders, appointment scheduling, and identifcation of patient 
problems [9]. Virtual health assistants have proven effective in-patient triaging and 
are available around the clock to improve healthcare accessibility. Some of the 
advantages are: 

• Optimization of workfow: AI helps healthcare workers by automating 
repetitive tasks, freeing them up to concentrate on important decisions and 
patient care. 

• Improved diagnosis: AI-powered diagnostic instruments offer fast and pre-
cise evaluations. 

• Individualized care programs: AI uses patient data analysis to customize 
treatment plans based on response, genetics, and individual traits. 

• Accurate forecasting: AI models can effectively address possible health 
issues by predicting disease trends. 

• Effective management of resources: AI aids in resource optimization, 
enabling healthcare providers to better manage personnel, assets, and 
facilities. 

• Simplifed administrative duties: By automating administrative proce-
dures, more patient-centric tasks can be completed with less paperwork and 
bureaucracy. 

• Instantaneous decision assistance: AI helps medical professionals make 
educated decisions during patient consultations and treatments by provid-
ing timely and pertinent information. 

• Ongoing education: Healthcare workers can remain up to date on the most 
recent developments in medicine thanks to medical AI. 

• Remote observation: AI-driven monitoring systems make it possible for 
physicians to track patients’ health outside of conventional clinical settings 
by facilitating remote patient monitoring. 

• Increased involvement of patients: AI technologies improve dialogue 
between patients and doctors, encouraging greater understanding, compli-
ance, and engagement with treatment regimens. 
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4.2.2 CHALLENGES OF AI 

In spite of many benefts of AI in healthcare, there are many challenges that a health-
care professional has to deal with [10]. Some of these are: 

• The major ethical dilemma in AI-powered mental healthcare is data pri-
vacy issues, like data breaches and exploitation of patient information for 
commercial use, which require strict protection measures. 

• Bias in algorithms is a signifcant issue in mental health assessment and 
care; AI algorithms use extensive datasets that may have biases, resulting in 
discrepancies in diagnosis and treatment suggestions that impact marginal-
ized communities. 

• Informed consent is highly essential in healthcare as it allows patients 
to make informed decisions based on complete information. The right is 
equally signifcant while utilizing AI in medicine, despite some thinking 
that black-box AI systems do not infuence it. A patient should be given the 
option to say no to AI-informed treatments if they are concerned [11]. 

• Keeping up with ethical guidelines in AI-based mental healthcare, lack 
of transparency in AI can impede understanding of how decisions are 
made. Understanding how AI operates and makes decisions is essential for 
patients and healthcare providers to ensure responsible use. Furthermore, it 
is crucial to hold AI accountable for its outcomes in cases of adverse events 
or mistakes. 

We give a summary of ongoing research endeavors aimed at creating an AI 
focused on humans. These initiatives involve a core reevaluation of user-focused data 
control and handling, alongside the creation of safe and privacy-protecting machine 
learning (PPML) algorithms and implementing clear and transparent algorithms and 
incorporating machine learning fairness principles and methodologies to address 
biases and discriminatory outcomes. According to our perspective, it is essential to 
focus on humans, as they are both the doers and the main focus of the discussion of 
the choices determined by algorithms [12]. If we can make sure that these criteria 
are fulflled, we should harness the benefts of AI-powered decision-making but also 
reduce the associated dangers of potential adverse effects on individuals and the 
entire society [13]. 

4.3 CONCLUSION 

In the future, research in AI-driven healthcare will focus on improving algorithms 
for better interpretation, minimizing biases, and maintaining strong privacy protec-
tions. Continuous updating of ethical guidelines is essential to adapt to technologi-
cal advances, and promoting interdisciplinary collaborations is necessary to tackle 
intricate challenges. The investigation of cutting-edge technologies like robotics, 
augmented reality, and blockchain in healthcare offers promising opportunities for 
future studies. Grasping the lasting effects on society and tackling accessibility 
issues will be essential in fully utilizing AI for improving global healthcare [14]. 
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This study lays the groundwork for ongoing discussions, partnerships, and exami-
nation of ethical dilemmas as AI further infuences the healthcare feld. In this 
research, we found that there are just as many supporters as detractors of this new era 
of AI-augmented practice. Many aspiring and current doctors are concerned about 
the decline in employment opportunities brought about by the rising use of technol-
ogy. While machines can interpret human behavior logically and analytically, they 
cannot develop human qualities like creativity, emotional intelligence, interpersonal 
and communication skills, critical thinking, or creative thinking. AI is going to be 
increasingly used in healthcare and hence needs to be morally accountable. Even 
though AI can’t replace the role of clinical judgment completely, it can nonetheless 
aid in decision-making for clinicians. In many cases where there is a lack of medical 
knowledge and resources, AI can be utilized for screening and evaluation. AI deci-
sions, unlike human decision-making, are always methodical due to the presence of 
algorithms [15]. It is observed by many groups that the fast speed development of 
AI in healthcare is an excellent strategy that might support healthcare practitioners. 
Nevertheless, despite the extensive potential and development of AI in the medical 
and healthcare sectors, this achievement has created additional challenges for medi-
cal ethics. We should be cautious because the disadvantages of it may outweigh the 
benefts. Professionals must consider morals and compassion when addressing this 
problem. 
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5 Ethical Issues in 
Neurodisorder Diagnosis 
Computational Intelligence 
toward Compassionate 
Psychiatric Treatment 

Bhupinder Singh, Rishabha Malviya, 
and Christian Kaunert 

5.1 INTRODUCTION 

Computational intelligence (CI) advancements raise critical issues affecting pri-
vacy and data security. Diagnoses for neurodisorders usually indicate the most 
clinically sensitive aspects of a patient’s mental and emotional well-being. Such 
advancements have transformed the neurodisorder diagnosis landscape, providing 
a new actionable avenue for more precise and individualized psychiatric therapy 
[1]. The overreliance on technology at times when humanistic perspectives might 
provide appropriate transparency and explainability and elicit informed consent 
presents issues constraining these systems, as complexity makes such processes 
extremely hard for healthcare providers to communicate to patients fully [2]. As 
CI is increasingly adopted in clinical psychiatry, it will be important to balance 
the embrace of systems capable of tracking and utilizing mental health informa-
tion with a frontline stance that humanizes patient care − fostering engagement 
and observance while supporting autonomy and shared decision-making between 
patients and clinicians based on evidence-based management options, as well as 
facilitating active working alliance through psychoeducation targeting diverse 
aspects. Such ethical issues should be met for the responsible and ethical use of 
CI in neurodisorder diagnosis and therapy [3]. Figure 5.1 depicts the landscapes of 
introduction split sections. 

5.2 OVERVIEW OF NEURODISORDERS 

Neurologial disorders, or neurodisorders, are diseases of the central and peripheral 
nervous system [4]. Such disorders manifest with various symptoms, like cogni-
tive impairment, motor defcits (ataxia), sensory loss, and emotional disturbances 
[5]. Progress in the feld of CI may change a diagnosis and treatment for neu-
rodisorders radically, including machine learning (ML) or artifcial intelligence 
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FIGURE 5.1 The landscapes of introduction split sections. (Source: Original.) 

(AI) [6]. It is important to underscore potential ethical considerations associated 
with the integration of CI in psychiatric care [7]. Major ethical considerations 
include privacy concerns, algorithmic bias, and the risk of technology supersed-
ing human-based health practices [8]. As CI increasingly becomes a part of neu-
rodisorder diagnosis and therapy, it is also vital to continue the advocacy for 
compassionate healthcare that honors patient autonomy while promoting shared 
decision-making [9]. 

5.3 ROLE OF COMPUTATIONAL INTELLIGENCE IN PSYCHIATRY 

Fine-tuning image-based diagnosis and fostering creative treatment strategies for neu-
rodisorders can be signifcantly enhanced through the application of Computational 
Intelligence, particularly the integration of Machine Learning and Artifcial 
Intelligence techniques [10]. To change the future by improving diagnostic accuracy, 
allowing for unique tailored treatment plans and earlier intervention, Machine learn-
ing have the potential to help improve not only quality of life but ultimately increase 
the lifespan [11]. Yet, the inclusion of CI in mental healthcare provokes much needed 
ethical questions too [12]. Ethically, important issue in machine learning include 
algorithms bias that can entrench societal biases as well and creation of new discrimi-
nation against socially vulnerable populations [13]. It also raises questions about pri-
vacy, transparency, and the risk of overutilizing technology without human-centered 
care [14]. Overcoming these ethical hurdles is essential if the responsible and human-
istic use of CI for diagnosing and treating neurodisorders is to be achieved [15]. 

5.4 IMPORTANCE OF ETHICAL CONSIDERATIONS 
IN NEURODISORDER DIAGNOSIS 

Such applications are recommended even for examples of common neurodisorders 
(e.g., stroke, Parkinson’s disease, dementia, attention defcit hyperactivity disorder 
[ADHD], and functional neurological disorder [FND]) [5]. These conditions can sig-
nifcantly affect an individual’s quality of life and put a heavy fnancial weight on 
that person, as well as healthcare systems [16]. The increasing role of CO (e.g., ML 



 
 
 

 
 
 

   

 
 
 

 
 
 

 

 
 
 
 
 
 

  

 
 

 
 
 

56 Computational Intelligence Algorithms 

and AI) in the diagnosis, management, conducting of procedures, and treatment of 
neurodisorders puts an emphasis on maintaining a compassionate approach to clinical 
care that honors patient autonomy while also supporting shared decision-making [17]. 
Since the technologies are being used for life-threatening situations, it is very impor-
tant to follow some ethical considerations [18]. Major ethical concerns are related to 
privacy, algorithmic bias, and overdigitization taking away the human responsibility 
from a part of care [19]. More generally, issues of being transparent and articulate are 
present in the description that must be given to patients before their decision concern-
ing how data-hungry this method can get [20]. 

5.5 UNDERSTANDING NEURODISORDERS: DEFINITION 
AND TYPES OF NEURODISORDERS 

These are a group of diseases referred to as neurodisorders, specialized conditions 
that affect our brain and spinal cord [21]. These range from cognitive through 
motor and sensory to emotional disorders. These disorders cover a broad range, 
affecting cognitive abilities, motor skills, sensory perception, and emotional well-
being. More and more, experts are suggesting the use of cutting-edge technolo-
gies like AI and machine learning to help manage prevalent neurodisorders such 
as stroke, Parkinson’s disease, dementia, ADHD, and Functional Neurological 
Disorder (FND) [22]. These conditions can deeply affect a person’s quality of life 
and create a hefty fnancial strain on both those who are affected and the health-
care system as a whole [23]. 

5.6 PREVALENCE AND IMPACT ON SOCIETY 

Neurodisorders such as stroke, Parkinson’s disease, dementia, and ADHD are 
the leading causes of morbidity in some countries and can lead to poor quality 
of life and a burden on healthcare systems. This can manifest phenotypically 
in cognitive impairment, motor dysfunction, and deficits related to emotional 
processing. Gone Integrating CI (i.e., ML and AI) in the diagnosis and treatment 
of neurodisorders represents a promising approach to improving care for these 
patients [24]. 

5.7 SPECIFIC ETHICAL ISSUES AND DECISION-MAKING 
SCENARIOS IN CLINICAL PSYCHIATRY 

Clinical psychiatry is where the ethical dilemma lies in a complexly woven web 
of patient autonomy, confdentiality, and benefcence [25]. Although keeping a 
patient’s confdential information private is very important, there are circum-
stances where you might need to share such information with someone else, such 
as when a patient says they are going to hurt themselves or others. Psychiatrists 
have to appropriately assess the risk and see if breaching confdentiality falls 
within legal and ethical criteria [26]. 
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5.8 COMPUTATIONAL INTELLIGENCE IN PSYCHIATRIC DIAGNOSIS 

CI, including the use of ML and AI to diagnose and treat neurodisorders, has been 
widely looked at as an avenue with signifcant promise [27]. These technologies can 
help boost diagnosis accuracy, support personalized treatments, and promote early 
intervention. Psychiatry has very important ethical considerations when using CI to 
help treat patients [28]. 

5.9 APPLICATION OF CI IN DIAGNOSING NEURODISORDERS 

There are also concerns over algorithmic bias, whereby the algorithms involved might 
reinforce social biases and further disadvantage already marginalized demographics 
[30]. The benefts of using CI for psychiatric diagnosis is depicted in Figure 5.2. 

CI algorithms can learn from the vast amounts of patient data available with neu-
roimaging, genetics information, and clinical symptoms. It should be very capable 
of detecting patterns in such data, resulting in more accurate diagnosis [31]. This can 
allow for an earlier and honed treatment of tumors, for example, which may improve 
patient outcomes. Incorporation of CI, just like ML and AI in the feld of diag-
nosis and treatment for neurodisorders, might be a great advancement [32]. These 
technologies can increase diagnostic precision, limit a course of treatment to the 
patient only, and support earlier intervention. The routine use of CI for psychiatric 

FIGURE 5.2 Benefts of using CI for psychiatric diagnosis. (Source: Original.) 
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diagnosis has the potential to be highly benefcial, as these technologies can increase 
diagnostic precision, tailor treatment plans to individual patients, and support earlier 
intervention [33]. 

Treatment strategies can be customized. CI can analyze data from individual 
patients to build personalized treatment plans that are more likely to refect spe-
cifc idiosyncrasies of each patient’s condition, thus improving and even shorten-
ing treatment. CI algorithms can detect subtle neurodisorder signs and cognitive 
symptoms earlier than conventional diagnostic techniques [34]. This enables timely 
intervention that is essential in preventing or delaying onset of these disorders [35]. 
The infuence of prejudices that may affect human judgment in psychiatric diagno-
sis can be reduced by CI algorithms. This can result in more impartial and repeat-
able diagnoses [36]. Yet, this implementation of CI in psychiatric care also has 
far-reaching ethical implications that deserve closer attention, including privacy 
risks, algorithmic bias, and the risk for technology to overpower human-centered 
approaches [37]. 

5.10 ETHICAL ISSUES IN NEURODISORDER DIAGNOSIS USING CI 

The integration of CI including ML and AI in the diagnosis and treatment of neurodis-
orders raises several ethical challenges that need to be discussed, such as privacy, 
because CI algorithms usually act upon privacy-related patient data like neuroim-
aging, genetic, and clinical information [38]. Protecting the privacy and security 
of such data are paramount but not at the expense of patients being well informed 
about how their data will be used as part of connected care that benefts them [8]. 
To some extent, this is because CI can have the highly desirable effect of increasing 
diagnostic accuracy and personalizing treatment, but there are also concerns that 
physicians will come to rely on these technologies at the expense of human-centered 
care. It must balance harnessing the advantages offered by CI and a compassionate 
approach that keeps patient dignity at heart [39]. It is necessary to deal with these 
ethical dilemmas in order to ensure that CI is utilized responsibly and compassion-
ately for the diagnosis and management of neurodisorders [40]. Continued collabora-
tion among clinicians, researchers, ethicists, and patients is needed to guide the way 
through these knotty problems [41]. 

5.11 PRIVACY AND DATA SECURITY 

Sobering concerns have also been raised in relation to neurodisorder diagnosis via 
CI, including ML and AI, which are nevertheless paramount as the process of data 
produced by mental processes [42]. Patient data collected and analyzed through these 
technologies include neuroimaging, genetics, as well as clinical information that is 
sensitive [43]. Maintaining the privacy and security of such data are paramount to 
preventing discrimination, stigmatization, and psychological harm for patients [5]. 
Patients have to completely understand what will be done with their data and how 
they are secured, and then their formal agreement reached in a clear manner. Data 
security measures like encryption, access controls, and regular security audits while 
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diagnosing neurodisorders through CI need to be adopted by the healthcare provider 
and researchers [44]. They also need to follow strict data governance rules that out-
line ownership, sharing, and retention defned data [45]. At the same time, in design-
ing CI algorithms for neurodisorder diagnosis, it is necessary to follow privacy by 
design principles such as data minimization, purpose limitation, and storage limita-
tion [46]. Remember that this can be a way to make sure that only the data needed 
for proper diagnosis and treatment are being collected and preserved. Focusing on 
ensuring patient privacy and data protection can help healthcare providers gain pub-
lic support for CI-assisted neurodisorder diagnosis to beneft patients in a safe, ethi-
cal way [47]. 

5.12 BIAS AND FAIRNESS IN CI ALGORITHMS 

Important concerns regarding fairness and bias can be brought up by the use of CI 
algorithms in the diagnosis of neurological diseases [9]. If these algorithms are not 
suffciently built and verifed, they could lead to the marginalization of people with 
disabilities and perpetuate social prejudices [48]. Several factors, including skewed 
training data, incorrect algorithms, or the naturally inherent preconceptions of the 
software developers, are susceptible to algorithmic bias. In this case, a CI algorithm 
may diagnose neurodisorders with lower precision in specifc populations if trained 
on data that demographically underrepresent those groups [49]. It is essential to make 
sure that CI algorithms are created and evaluated using a variety of representative 
datasets in order to reduce the possibility of bias. Throughout the algorithm creation 
process, developers should watch for possible biases and take suitable measures to 
detect and address them [50]. 

5.13 TRANSPARENCY AND EXPLAINABILITY 

An important ethical component to take into account when applying CI algorithms 
for diagnosing neurodisorders is the question of transparency and explainability 
[51]. Medical professionals may fnd it challenging to properly explain the decision-
making process to patients due to the intricacy of these algorithms, which poses 
problems with informed consent [52]. Figure 5.3 specifes points on transparency 
and explainability. 

The following are the salient features of the consent−autonomy relationship in 
the context of CI-based neurodisorder diagnosis. Informed consent is a means of 
safeguarding and promoting patient autonomy by ensuring they are aware of the sug-
gested course of treatment and are able to make an informed choice [53]. Autonomy 
is regarded as an individual’s ability to make free and rational choices about their 
healthcare. Informed permission is important for protecting patient autonomy when 
utilizing CI to diagnose neurodisorders [54]. This empowers patients to make inde-
pendent decisions about accomplishing the CI-based diagnosing. Patients must have 
a complete understanding of how their data will be collected and used, the potential 
advantages and perils of the CI-based diagnosis, and any alternatives [55]. It may 
be challenging for medical professionals to thoroughly explain the decision-making 
process to patients due to the intricacy of CI algorithms employed in the diagnosis 
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FIGURE 5.3 Specifes the points on transparency and explainability. (Source: Original.) 

of neurodisorders. In order to support informed consent and collaborative decision-
making, efforts must be made to improve the explainability and transparency of 
these algorithms [56]. Encouraging benefcence, or acting in the patient’s best inter-
est, but still respecting their autonomy may confict. In order to give the best care 
possible and make sure CI-based diagnoses respect autonomy, healthcare profession-
als need to carefully oversee this fne line [57]. 

5.14 CONSENT AND AUTONOMY 

Few things are as central when it comes to use of CI for neurodisorder diagnosis 
than the matter of autonomy and consent. Autonomy is a patient’s ability to make 
free and informed decisions regarding their own care, while informed consent helps 
safeguard this autonomy [58]. In the setting of CI-based diagnosis, patients must be 
given full disclosure as to how their data are used and may gain beneft or risk associ-
ated with any alternatives [59]. In this way, they can decide for themselves whether 
or not to go forward with the diagnostic process [60]. However, critical parts of 
the decision-making capacity may be impaired in some neurodisorder patients; hav-
ing sound informed consent might become very diffcult to achieve [61]. Individual 
autonomy must always be weighed against benefcence, the moral obligation to act in 
a way that benefts others. To allow informed consent and shared decision making, 
it is important to enhance the transparency and explainability of CI algorithms [62]. 

5.15 ENSURING INFORMED CONSENT IN CI-BASED DIAGNOSIS 

One of the most important ethical issues is reasoning about how to obtain informed 
consent when analyzing neurodisease in using CI [63]. Patients need to get clear, 
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understandable information about the treatment process when using CI data and with 
whom and under which conditions this will or can be shared (a privacy statement) 
[64]. These individuals should also be informed of possible advantages, risks, and 
disadvantages of the technology [65]. The consent process should be continuous, 
with the patient having an opportunity to ask questions and withdraw consent at 
any time [66]. Providers may also be required to obtain consent from family mem-
bers or legal guardians for patients with impaired decision-making capacity. Patient 
autonomy is paramount, and making well-informed decisions in their care respects 
transparency with shared decision-making [67]. 

5.16 BALANCING AUTOMATION AND PATIENT AUTONOMY 

In the future, if it begins to be more common to use CI in neurodisorder diagnosis, 
then we may run into a problem of overautomating our diagnostics and taking away 
from patient autonomy [68]. However, we should not replace human intervention 
and the therapeutic alliance of the patient−provider relationship. Healthcare profes-
sionals need to fnd the right balance by taking advantage of CI while concurrently 
ensuring patient autonomy and promoting shared decision-making [69]. That could 
include, with regard to greater transparency over how the algorithms operate, getting 
patients involved in understanding results and keeping humans (clinicians) as part 
of the diagnostic process [70]. But the aim, in the end, is to enable patients to have 
information with which they can make decisions − not simply give up control so that 
automated systems take over [71]. 

5.17 CONCLUSION AND FUTURE SCOPE SMART 
SUSTAINABLE CITIES: A GUIDE TO TECHNOLOGY, 
DATA, AND URBAN TRANSFORMATION 

The use of CI technologies in smart sustainable city development can provide a 
promising solution to promoting urban sustainability and enabling transformative 
changes [72]. But it must tread cautiously − while thoughtful application of AI holds 
the promise, the potential misuse and responsible use come with signifcant ethical 
considerations [73]. Ethical considerations include data privacy and security, algo-
rithmic bias, transparency and explainability, and impact on vulnerable population. 
To inspire trust and guard against these risks, all AI regulation requires strong data 
frameworks combined with machine audit processes that are accompanied by a 
society-wide commitment to transparency. 
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6 Improving Magnetic 
Resonance Imaging (MRI) 
for Better Understanding 
of Neurological Disorders 
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Chhabra, Sahar Zaidi, and Habiba Sundus 

6.1 INTRODUCTION 

One of the most innovative medical imaging technologies is magnetic resonance 
imaging (MRI). The MRI equipment uses radio waves and a strong magnetic 
field to provide comprehensive images of the body’s internal anatomy. These 
structures provide anatomical details that are helpful to diagnose various neu-
rological disorders. However, the raw data of MRI images often contain some 
imperfections that inherently limit the imaging technology, such as patient 
movement during scanning and variations in tissue properties, and that cause 
the chance of artifacts (such as noise, motion artifacts, and intensity inhomo-
geneities) or poor image quality. So, preprocessing techniques are important to 
decrease the chances of artifacts and improve their image quality and reliability 
[1]. In this chapter, the various types of distortions and imperfections that can 
affect MRI image quality and the techniques used to mitigate these issues are 
discussed in detail. 

6.2 BASICS OF MRI DATA 

An MRI scanner produces images with the help of hydrogen atoms in the body. 
The human body is composed of approximately 60−70% water, and water mol-
ecules contain hydrogen atoms, which makes it possible to create MRI images. 
When a patient is placed inside the MRI machine, a strong magnetic feld is pro-
duced by the magnet in the scanner, and the magnetic feld affects the hydrogen 
atoms in the patient’s body. Hydrogen atoms are particularly suitable for MRI 
because they have a single proton in their nucleus, and according to quantum 
physics, atoms with an odd number of protons are affected by magnetic felds. 
These protons behave like tiny magnets [2]. These protons align with the strong 
magnetic feld in a manner like that of a compass needle aligning with the mag-
netic feld of Earth. A radio frequency (RF) pulse is applied once the protons 
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are positioned. Protons are defected away from the magnetic feld by this pulse, 
which throws them off alignment. A process called relaxation occurs when the 
RF pulse is stopped, causing the protons to move back toward their initial align-
ment. Radio waves are the signals that are released by the hydrogen nuclei when 
they realign [3]. Receiver coils in the MRI scanner pick up these signals. The 
signals that are released are dependent on the hydrogen atoms’ surroundings, and 
this information gives specifc details about the various body tissues. A computer 
processes the signals it has detected to produce digital images. Usually, these 
pictures are taken in slices that can be assembled to provide a three-dimensional 
picture of the scanned region. The little units that make up each slice are known 
as voxels, or volume pixels; these are the three-dimensional equivalents of pixels 
in a two-dimensional picture. Each voxel’s intensity, which is connected to the 
signal given out by the hydrogen nuclei, depicts the properties of the underlying 
tissue [4]. 

The following factors can impact the quality of MRI images even with modern 
equipment: 

Noise: Noise in MRI refers to undesired signals or interference that may 
obscure the original imaging data. 

Motion artifacts: Motion artifacts are the unwanted blurring or distortion of 
the images potentially caused by several factors, such as patient movement 
or internal physiological movements. A motion artifact can produce images 
that are not clear to diagnose. Sometimes images are blurred, sometime 
distortion is produced in an image, and sometime ghosting artifacts are 
generated due to motion. Actually, the type of motion artifact depends on 
the degree and kind of motion. 

Geometric distortions: A geometric distortion is produced due to the varia-
tion in the main magnetic feld, and this produces local distortion in the 
frequency of spins. So, the frequency is affected, and also the image is 
affected. 

Intensity inhomogeneities: This artifact is mainly in higher Tesla machines, 
like the 3 Tesla machine. Radio frequency waves are produced in a nonuni-
form manner so that the feld excited due to the magnet can fip in an uneven 
manner across the image. This can obscure the true contrast of the tissue, 
making the image’s interpretation very diffcult. 

Signal-to-noise ratio (SNR): This is the measure of quality of an MRI signal in 
relation with background signal. So the higher SNR is essential to produce 
better images and accurate interpretation of MRI images. 

Artifacts: Artifacts are anomalies that are not present in normal anatomy or 
pathology. They are generated from various sources, like the patient’s body, 
the MRI machine, or software. Artifacts may affect the image quality and 
lead to misinterpretation of images. In addition to motion artifacts, other 
sources of distortion may arise due to machine-related issues or acquisi-
tion inconsistencies. These machine and other artifacts include signal drop-
outs, hardware malfunctions, scanner calibration errors, and electronic 
interference. 
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6.3 IMPROVING IMAGE QUALITY 

6.3.1 NOISE REDUCTION TECHNIQUES 

Noise reduction techniques are very important to improve the SNR. It is crucial to 
interpret images accurately. Many noise reduction techniques are used in MRI, such 
as spatial and frequency domain fltering, nonlocal means, anisotropic diffusion, 
adaptive fltering, and deep learning−based methods. Noise reduction techniques 
can be used to minimize noise while maintaining anatomical structure. Spatial flter-
ing applies a direct spatial domain adjustment to the voxel intensities based on their 
neighbors. The three sources of noise − thermal, electronic, and physiological − 
are smoothed out of the MRI pictures using spatial fltering techniques, including 
mean, median, and Gaussian fltering. This fltering improves the clarity and quality 
of the images. Spatial fltering techniques can be divided into three main categories: 

• Mean fltering: This technique replaces the intensity of each voxel with the 
average intensity of its neighboring voxels. It minimizes the noise artifact 
but can also affect the fne details and edges of the image and thus produce 
a blurry image. 

• Median fltering: This technique is used mainly in MRI. It is used to mini-
mize noise, such as salt and pepper noise. Unlike mean fltering, median 
fltering yields good quality edges and fne details. 

• Gaussian fltering: This method increases the weight of surrounding voxels 
by transforming their brightness using a Gaussian function. A fair balance 
between edge preservation and noise reduction is achieved with the help of 
Gaussian fltering [5] 

Several other fltering techniques are used: 

• Frequency domain fltering: Frequency domain fltering is used to change 
the image back to its original form (spatial domain) and then transform it 
again into a new form (frequency domain). 

• Fourier transform fltering: This technique is used in MRI for the noise 
reduction and better image reconstruction. It is a software that can convert 
the images into the frequency domain in the form of raw data. It is very 
important because k space naturally contains raw data or the frequency 
domain. 

• Wavelet transform fltering: This is very sophisticated technique used to 
improve the image quality by reducing noise and suppressing artifacts. This 
software works by breaking the image in two different parts, that is, fre-
quency and spatial components. This helps in improving image quality. 

• Anisotropic diffusion fltering: This method is used in image processing to 
lower noise while maintaining important elements like edges. As opposed 
to isotropic diffusion, which uniformly blurs an image, anisotropic diffu-
sion modifes the level of soothing by taking into account local gradients 
in the image. This preserves the edge sharpness while enabling a sizable 
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reduction in noise in homogeneous regions. Iteratively updating pixel val-
ues while striking a balance between noise reduction and feature preserva-
tion, the approach operates by solving partial differential equations [6]. 

• Nonlocal means (NLM) fltering: NLM fltering is an advanced tech-
nique that may be used to reduce noise. It cannot affect the structure of 
the image but can maintain the image’s fne features. It also improves 
the SNR in functional MRI (fMRI) data. NLM fltering is used to deter-
mine the value of a pixel. The similarity between the local neighbor-
hoods (patches) of the pixel under comparison determines the weights. 
By ensuring that the genuine underlying signal is taken into consider-
ation during the averaging process, this method reduces noise without 
obscuring signifcant features [7]. 

• Deep learning−based noise reduction: This noise reduction model in MRI 
is a highly effective method that improves the image quality. The model 
can generate high-quality denoised images by learning to discriminate 
between noise and an actual signal. This is work during data collection 
in MRI. The dataset collected is both noisy images and their correspond-
ing clean versions (which can be obtained through high-quality scans or 
simulations). This dataset is utilized to train a neural network. The net-
work acquires the ability to map clean images to noisy ones. In order to 
minimize the difference between the predicted and actual clean images 
in the training set, the network’s parameters are adjusted during this 
training process. After the network is trained once, it is used to denoise 
new MRI images. There are various neural network types that can be uti-
lized for MRI noise reduction, but convolutional neural networks (CNNs) 
are the most widely used because of their superior image data handling 
capabilities [8]. 

6.4 TECHNIQUES FOR MOTION CORRECTION 

Moving structures in an MRI, such as blood and cerebrospinal fuid (CSF), can 
cause phase changes that result in image ghosting and blurring. These artifacts 
arise from inconsistent MRI signals from moving tissues at the time of the image 
acquisition process. Motion artifacts may seriously affect the quality of MRI 
images, making it more challenging to correctly detect and understand neuro-
logical conditions [9]. Motion correction in MRI is important for obtaining high-
quality images. Various techniques are used to eliminate the motion artifacts and 
improve image quality. 

6.4.1 GRADIENT MOMENT NULLING (GMN) 

GMN is an advanced technique in MRI which is used to reduce the effects of motion, 
particularly from periodic movements like blood fow and respiratory motion. 
Moving tissues encounter different magnetic felds when the MRI machine uses gra-
dients to encode spatial information, which results in phase changes in the signals 
from those tissues. Over time, these adjustments compound to produce artifacts in 
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images. To compensate for motion-induced phase shifts, GMN alters the gradient 
waveforms. It primarily targets the gradient’s initial moment, which is correlated 
with the motion of tissues. By nulling (or cancelling out) this particular time, GMN 
reduces the motion’s effect on the image. In some cases, physiological processes such 
as blood fow and cerebrospinal fuid (CSF) movement can result in visible artifacts. 
These may include blood fow artifacts in the brain’s veins and arteries during neu-
roimaging, CSF pulsation artifacts in spinal imaging, and motion-related distortions 
caused by blood fow to and from the heart. To reduce such artifacts, specifc imag-
ing techniques and sequence adjustments are often employed [10]. 

6.4.2 MOTION-INSENSITIVE SEQUENCES 

Motion-insensitive sequences in MRI are important for obtaining clear, high-quality 
images in situations where motion is unavoidable. Motion-insensitive sequences in 
MRI have been designed to reduce the artifacts caused by patient movement and 
internal body motions (e.g., breathing or heartbeats). They are particularly helpful in 
imaging patients who are unable to remain still, like children, or in obtaining images 
of naturally moving organs, such as the heart or lungs. Acquiring an MRI scan takes 
time. Any movement during this period may cause the images to become blurry, 
making it diffcult to identify the small details. This is like attempting to take a clear 
picture with a camera when the subject is moving. To address this, certain MRI 
sequences have been developed to be less affected by motion. These sequences are 
designed to either capture images quickly or in a way that compensates for motion. 
Some main sequences are single-shot sequences, rapid imaging techniques, naviga-
tor echoes, and parallel imaging [11]: 

• Single-shot sequences: These sequences minimize the possibility of motion 
affecting the image by capturing all the required information in a single 
shot or very quickly. One frequently utilized single-shot method is echo 
planar imaging (EPI). 

• Rapid imaging techniques: These methods speed up the process of acquir-
ing images. Patients need to stay still for shorter periods during faster scans, 
which minimizes motion artifacts. For example, compared to conventional 
spin echo sequences, fast spin echo (FSE) captures data more quickly. And 
similar to FSE, turbo spin echo (TSE) speeds up the process even more. 

• Navigator echoes: These special echoes are collected along with the pri-
mary imaging data in order to track and adjust for mobility. The data can 
be adjusted and corrected by the scanner if it detects motion, as detected 
by the navigation. Clearer images are produced through real-time motion 
correction made possible by continuous monitoring. 

• Parallel Imaging: This method effectively speeds up the scan by using mul-
tiple coils to record data at the same time. Motion artifacts are minimized 
when images are acquired more quickly because less time is available for 
motion to happen. Examples of such techniques include generalized auto-
calibrating partially parallel acquisitions (GRAPPA) and sensitivity encod-
ing (SENSE) [12]. 
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6.4.3 BREATH-HOLD TECHNIQUES 

In MRI, breath-hold methods are used to reduce respiration-related motion artifacts. 
Breathing during an MRI scan can move the patient signifcantly, particularly in the 
chest and the abdomen. We can take images without respiratory motion interfer-
ing, which results in clearer, more accurate images, by asking patients to hold their 
breath. Breath-hold techniques are usually used along with fast imaging sequences 
in order to reduce the breath-hold duration. The scan sequences are designed to ft 
inside the breath-hold time, which is usually between ten and 20 seconds. Frequently 
used methods include gradient echo (GRE), EPI, and FSE [13]. Longer imaging 
sequences may be scanned in segments, with each segment acquired during a dif-
ferent breath-hold. 

6.4.4 PHYSICAL RESTRAINTS 

Motion can distort MRI scan results, making it challenging to obtain precise and 
clear results. This is particularly relevant for patients − such as children or indi-
viduals with mobility impairments − who may move during the scan. Techniques 
for physical restriction are employed to reduce this movement and enhance the 
quality of MRI images [14–16]. Restraints are used for many purposes, such as 
to take clear images, ensure patient safety, and minimize movement to avoid 
repeat scans and save time. There are various types of restraint techniques used 
in MRI. For example, pillow and cushions can be used to keep the patient com-
fortable and stay in the correct position. Foam pads can be used around the head, 
legs, and arms to minimize movement. And body straps are adjustable belts that 
are used to hold the head or neck during a scan and secure the patient’s body on 
the table. In MRI, a head coil also works as a restraint as well as capturing the 
signals. 

6.4.5 PROSPECTIVE MOTION CORRECTION (PMC) 

PMC is an advanced method used in MRI to instantly adjust for patient movement 
during scans. PMC operates by detecting and correcting motion as it occurs, in con-
trast to conventional techniques (retrospective correction) that attempt to fx motion 
artifacts after the scan. It reduces repeated scans and save times. In PMC, the initial 
step is to fnd the patient’s movement. A variety of technologies can be used for this, 
like navigator echoes, external sensors, and in-bore sensors. They all are tracking 
the body movement [17]. 

6.4.6 RETROSPECTIVE MOTION CORRECTION (RMC) 

RMC is a technique that is used to adjust for patient motion after the scan is 
completed. As compared to PMC, which modifes for motion while the scan is 
happening, RMC processes the obtained images in order to eliminate or mini-
mize motion artifacts. When motion is discovered after the scan, this method is 
quite helpful as it allows for image enhancements without repeating the scan. 
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Retrospective image correction saves time by minimizing the need for repeat-
ing scans. After the scan, motion is detected by analyzing the obtained images. 
There are various ways to achieve this such as comparison with reference images 
and image analysis algorithms; these two methods are commonly used to detect 
motion artifacts. After the detection of motion artifacts, some methods are used 
to correct the images, like fltering techniques, reconstruction methods, etc. 
RMC is frequently used in brain scans or neuroimaging, in which little motions 
can cause notable artifacts [18]. 

6.5 ADVANCED PREPROCESSING TECHNIQUES 

In MRI, preprocessing is an advanced method that is important for increasing image 
quality, minimizing artifacts, and improving the accuracy of subsequent research. 
Clinicians and researchers can obtain more accurate and detailed images, improving 
diagnostic results and providing deeper insights into neurological and other disor-
ders, by utilizing techniques like bias feld correction, nonlocal means denoising, 
wavelet transform fltering, anisotropic diffusion fltering, and machine learning 
(ML)−based approaches [19]. 

6.5.1 FMRI PREPROCESSING 

fMRI is a technique used for mapping and quantifying brain activity with the help of 
detection of blood fow. The preprocessing technique in fMRI is essential to provide 
clear and accurate data for analysis. Many software tools are available for fMRI 
preprocessing, including Analysis of Functional Neuro Images (AFNI), the FMRIB 
Software Library (FSL), and Statistical Parametric Mapping (SPM). Each software 
has some advantages and works well with particular kinds of analysis. Preprocessing 
techniques improve the quality and dependability of the data and produce more pre-
cise images and signifcant results by addressing problems such as head motion, slice 
timing, and artifacts and irregularities [20]. 

6.5.2 DIFFUSION MRI PREPROCESSING 

Used to measure the diffusion of water molecules in brain tissues, this technique 
is generally applied in brain imaging for the mapping of white matter of the brain. 
The raw data of diffusion MRI sometimes contain various types of artifacts and 
distortion that must be eliminated or corrected before the data analysis. So, the pre-
processing techniques are very important to maintain accuracy and better image 
quality [21]. 

6.6 MRI AND ARTIFICIAL INTELLIGENCE (AI) 

Improvements to MRI technology helps patients and the medical facility by 
improving picture quality, shortening scan times, and creating a more comfort-
able environment. By utilizing less data to produce better images, AI allows for 
higher resolution and faster scan times. The data of MRI images may be used by 
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AI to build a 3D virtual reality training or diagnostic tool to improve the image 
quality. While AI is not yet widely used in the area of MRI, its application is 
anticipated to grow in the coming years as outdated equipment is replaced and 
a new generation of radiologists and technicians becomes more knowledgeable 
about its benefts. MRI is becoming an increasingly more dependable diagnostic 
tool because of the digitalization of technology and the introduction of AI, albeit 
it is still in its early stages for this application. A computed tomography (CT) 
scan and X-ray are often followed by an MRI as the last imaging modality that 
may provide the highest degree of information prior to surgery. With the extra 
advantage of just requiring one diagnostic procedure rather than three, cardiac 
MRIs may provide information not seen in other scan types or an angiography, 
including the ability to reveal the heart chambers, outfow pathways, and cardiac 
muscle degeneration from a variety of angles. 

AI might be a welcome improvement over conventional MRI technology from 
the standpoint of the radiology MRI technician for a number of reasons. Without 
the presence of a cardiac specialist to ensure the scan’s optimization, AI may 
design an MRI cardiac scan that is prepared by a skilled MRI technician, includ-
ing four-chamber, two-chamber, left-ventricular outfow tract, right-ventricular 
outfow tract, and short axis views. AI can evaluate pictures and identify micro-
scopic, early-stage malignant lumps or lesions, or it can quantify brain scans 
that identify and score diseases like dementia and Alzheimer’s at levels that a 
human eye could miss. These abilities are used in radiologists’ reports. AI is 
even capable of assigning a value or grade that facilitates diagnosis. For instance, 
a Gleason score—a scoring system for prostate conditions—could be used to 
determine the cancer stage based on an MRI of the prostate. Another reason to 
embrace AI is that it is more accurate than depending just on what the human eye 
can detect via examination. Shortening the learning curve for these processes, 
AI enables quicker 3D image scans and can also send pictures from an MRI scan 
to virtual reality (VR) software platforms. Before starting an invasive treatment, 
the surgeon may get greater information from VR-viewed brain scans, which can 
even help with a more successful game plan that includes a 3D trial surgery. The 
effect of surgery on organs or tissue may be minimized with the use of the infor-
mation obtained from the MRI/VR technique before the operation. This usage of 
VR is made feasible by the Microsoft technology Apoqlar, which combines clini-
cal procedures, medical education, and medical pictures (displayed in voxels, 
the units associated with 3D imaging) into a 3D mixed-reality environment. For 
this application, a cloud-based data platform is required. Using AI-gathered data 
from MRI scans, VR may be utilized not only to enhance presurgery preparation 
but also to further instruct medical students and surgical residents, reducing the 
requirement for cadaver training. 

AI’s capacity to convert coarsely sampled, faster MRI scans into higher-
resolution images, minimize movement-related image degradation, and lessen 
patient discomfort from being in an enclosed, frequently cramped space offers 
additional advantages that help reduce scan times. Roomier MRI systems are the 
outcome of improved technology brought about by the stronger magnetic pulses 
produced and received during a scan. For example, cutting a 20-minute scan down 
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to a ten-minute one usually degrades that quality and presents new diffculties for 
the technician. Shorter scans may now have their resolution improved with the use 
of AI technology flters, stronger radio frequency coils, and improved software, 
producing picture quality that is closer to that of a conventional, lengthier MRI 
operation. One word of caution: investing entirely in AI for MRI scanning will 
also need hardware improvements, which will cost money for any imaging center 
or department. 

Research from many universities, including Stanford University in California, 
demonstrates that using AI to MRI reconstruction may provide reliable pictures at 
half or even less of the time previously needed. The objective of reducing patient 
pain by cutting scan times without sacrifcing picture quality is a constant through-
out these experiments. Additionally, it allows independent imaging facilities and 
hospitals to see more patients in less time, which enhances productivity and poten-
tially boosts revenue. 

The Fast MRI blind test, which was conducted by Facebook AI Research (FAIR) 
and New York University (NYU), released its fndings in 2020. Researchers dis-
covered that there was no discernible difference in the way doctors participating 
in the blind test assessed conventionally generated MRIs and those produced with 
AI support utilizing much less (up to 75%) source data. Using both approaches, 
the patient’s diseases or anomalies were found to be the same. It was found that, 
generally, the AI-generated pictures were of higher quality, and that fve out of six 
radiologists were unable to identify which photos were produced with the use of 
AI enhancing methods. This, according to the NYU/Facebook research, is where 
ML and AI collide. By enhancing MRI picture quality, segmenting prostate scans 
to identify suspicious areas (foci) where cancer may be found, and separating can-
cer cells that may be deemed relevant from those that are not, AI may aid in the 
diagnosis of prostate cancer. After a lesion has been scanned, it may be graded 
(using Gleason scores, for example), which helps expedite the diagnosis and selec-
tion of the best course of action. Radiologists may use AI to see what’s going on 
in the brain’s sulcal spaces, or grooves and furrows, and gyral (gray matter). AI 
can precisely quantify scans with values and, using a prediction value built into 
the algorithm based on previous histories, can assist in determining the stage and 
early onset of dementia. 

6.7 CONCLUSION 

Preprocessing of MRI data is an essential frst step to guarantee the quality, accu-
racy, and dependability of the fnal images, which are crucial for the diagnosis and 
understanding of neurological illnesses. Specifc issues with MRI data, including 
noise, scanner distortion, and patient motion, are addressed by each of these meth-
ods. Preprocessing not only enhances image quality but also increases data consis-
tency and comparability among various patients and research. Scientist and medical 
practitioners can improve diagnostic results and acquire a better knowledge of neu-
rological disorders with the help of effcient preprocessing techniques to extract 
deeper insight from MRI data. Modern technologies like ML and AI may signif-
cantly change the way MRIs are preprocessed. Robotic and real-time preprocessing 
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techniques will eliminate the need for human intervention, increasing the accessibil-
ity and effciency of MRI research. Motion correction, noise reduction, and artifact 
removal approaches will further improve the image quality, and standardization ini-
tiatives will guarantee that preprocessing techniques are dependable and repeatable 
in a variety of clinical and research scenarios for better quality. 
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7 Advancements in 
Neuroimaging Techniques 
in Encephalopathy 
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7.1 INTRODUCTION 

Throughout history, scientists have worked to observe the brain and its sys-
tem through the protective skull of a living human. Early civilizations, like 
the Egyptians and Greeks, had a basic understanding of the brain. The Edwin 
Smith Papyrus (approximately 1700 BCE) includes some of the oldest accounts 
of the brain and its injuries. The Greek philosopher Hippocrates (approximately 
460−370 BCE) proposed that the brain was the seat of intellect, disputing the 
previously held idea that the heart was the center of thought and emotion. In the 
sixteenth century, Vesalius’ meticulous anatomical drawings produced a more 
realistic portrayal of the brain organization, his treatise “De Humani Corporis 
Fabrica” (1543) cleared out many ancient fallacies [1]. Willis’ “Cerebri Anatome” 
(1664), published in the seventeenth century, set the groundwork for contempo-
rary neurology. He described the Circle of Willis, a crucial vascular circle near 
the base of the brain, and hypothesized that distinct brain areas performed spe-
cialized roles. Gall’s phrenology, which proposed that the brain is made up of 
separate faculties, each corresponding to a different personality feature, was an 
early attempt to connect brain shape and function [1, 2]. Although eventually 
dismissed, it piqued curiosity in cerebral localization. In the 1860s, Broca dis-
covered the region in the left frontal lobe involved in speech production, which is 
today known as Broca’s area. Wernicke later identifed Wernicke’s region, which 
is located in the temporal lobe and is involved in language processing. 

These insights were critical to understanding the localization of brain activi-
ties. In the late nineteenth and early twentieth century, Cajal employed the Golgi 
staining procedure to expose the complicated structure of neurons [3]. He pro-
posed the neuron doctrine, which states that neurons are the fundamental units 
of the neurological system, and this transformed neuroscience. Signifcant mile-
stones in the study and knowledge of the brain have occurred, ranging from early 
anatomical investigations to advanced imaging techniques. Each innovation has 
taken us closer to understanding the brain’s intricacies and functions, paving 
the path for novel therapies and interventions for neurological and psychiatric 
illnesses. As technology advances, discoveries are expected to revolutionize 
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our understanding of the brain and its enormous impact on human health and 
behavior. Despite signifcant advances in neuroimaging, diagnosing [4] encepha-
lopathy syndrome in unusual patients remains diffcult. Using modern imaging 
techniques can help clinicians rule out mimics and deliver a more accurate diag-
nosis at an earlier stage. Some of these methods can also help to understand the 
disease’s complex pathophysiology [5]. In this article, we look at the function 
and fndings of modern imaging techniques in the diagnosis of encephalopathy 
syndrome. 

7.2 ADVANCED NEUROIMAGING ANALYSIS TECHNIQUES 

Advanced artifcial intelligence (AI) algorithms are making substantial advances 
in neuroimaging, with applications ranging from image processing to discovering 
new insights into brain activity. Some of the main techniques are discussed in this 
section. 

7.2.1 CONVOLUTIONAL NEURAL NETWORK (CNN) 

CNNs are widely used to analyze neuroimaging data, such as magnetic resonance 
imaging (MRI). They can automatically recognize and segment brain structures, 
fnd patterns, and categorize various brain states or disorders [6, 7]. 

CNNs have transformed neuroimaging by offering strong tools for identifying 
and understanding neurological disorders. Here are some specifc therapeutic appli-
cations and their implications: 

• Brain tumor detection and classifcation: CNNs outperform standard
approaches for detecting and classifying brain tumors using MRI data.
This is critical for early detection and treatment planning. Accurate clas-
sifcation of tumor types (e.g., gliomas, meningiomas) aids in the devel-
opment of personalized treatment strategies, ultimately improving patient
outcomes.

• Alzheimer’s disease detection: CNNs can detect tiny changes in brain
structure that are characteristic of Alzheimer’s disease, frequently before
clinical symptoms occur. Early diagnosis enables early intervention and
management. CNNs can track Alzheimer’s progression by analyzing
sequential MRI scans, allowing clinicians to change treatment strategies
as needed [8].

• Multiple sclerosis (MS) lesion segmentation: CNNs can accurately segment
MS lesions from MRI scans, offering consistent and trustworthy data that
help to track disease progression. CNNs aid in the evaluation of therapy
effcacy by quantifying lesion load and change over time.

• Epilepsy focus localization: The accurate localization of epileptic foci
using CNNs from neuroimaging data aids surgical planning and improves
surgical outcomes for epilepsy patients. CNNs provide a noninvasive way
of detecting epileptic regions, which reduces the requirement for intrusive
treatments.
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• Stroke detection and outcome prediction: CNNs can detect acute strokes 
rapidly and reliably from CT and MRI scans, allowing for prompt inter-
vention. Predicting outcomes and likely recovery trajectories using initial 
imaging aids clinical decision-making and patient counseling [9]. 

7.2.2 GENERATIVE MODELS 

When real data are limited, techniques like generative adversarial networks (GANs) 
can produce synthetic neuroimaging data to aid in model training. They can also be 
used to enhance data and improve image quality. Generative models, notably GANs, 
have demonstrated great promise in the feld of neuroscience. GANs are made up of 
two neural networks: a generator and a discriminator, which compete to enhance the 
quality of the generated data. Here’s an in-depth look into how GANs function, their 
applications in neuroimaging, and their therapeutic implications: 

Enhanced diagnostic accuracy: GANs increase the quality and quantity of 
training data, resulting in more accurate and robust diagnostic models. 
Better-trained models can detect and diagnose neurological diseases earlier 
and more accurately, resulting in better patient outcomes. 

Reduced data acquisition costs: Using synthetic data eliminates the need for 
lengthy and costly neuroimaging examinations. Lowering prices makes 
advanced diagnostic procedures more accessible and allows for larger-scale 
studies. 

Improved image quality for better study: Increasing image resolution and 
quality enables a more detailed and accurate study of brain structures and 
diseases. High-quality photos enable improved detection of small abnor-
malities, which aids in early diagnosis and treatment planning [10]. 

Standardization across investigations: Domain adaptation and data imputation 
standardize neuroimaging data, lowering variability and increasing reli-
ability in multicenter investigations. Consistent data quality improves both 
the reproducibility of research fndings and the dependability of clinical tri-
als. GANs are effective methods for creating synthetic neuroimaging data, 
enhancing picture resolution, and addressing issues with data unpredict-
ability and missing data. Their implementation in neuroimaging improves 
diagnostic accuracy, lowers expenses, and promotes improved clinical and 
research outcomes. GANs outperform traditional neuroimaging techniques 
by producing high-quality synthetic data, boosting picture resolution, 
imputing missing data, lowering costs, and increasing model robustness 
and generalization. These advantages make GANs an effective tool for 
improving neuroimaging analysis and clinical practice [11]. 

7.2.3 MULTIMODAL INTEGRATION 

AI may combine data from many imaging modalities (such as MRI, PET, and fMRI) 
to produce a more complete picture of brain function and anatomy. This can improve 
diagnostic accuracy and understanding of complex brain illnesses. 
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Enhanced diagnostic accuracy: Combining data from different imaging modali-
ties lowers diagnostic ambiguity, resulting in more accurate and timely diagno-
sis. It also allows for more targeted therapies, which improves patient outcomes. 
Multimodal imaging offers extensive information about an individual’s condition, 
allowing for tailored treatment options. It increases therapy effcacy while reducing 
side effects. Multimodal imaging enables complete monitoring of disease devel-
opment and therapy response. It predicts disease outcomes and guides long-term 
care solutions. Multimodal imaging also provides a comprehensive perspective of 
the brain, making it easier to conduct research into the underlying causes of brain 
illnesses. It promotes the development of novel diagnostic tools and therapy tech-
niques. Multimodal imaging identifes important brain areas that control sensory, 
motor, and cognitive functions, and reduces the possibility of injuring important 
areas during brain surgery, hence improving patient safety and outcomes [12]. 
Algorithms trained on multimodal data can forecast disease progression and treat-
ment outcomes, which helps clinicians make informed judgments about patient 
care. 

Enhanced understanding of brain function: Multimodal integration sheds light on 
the complex relationships among brain structure, function, and metabolism. It con-
tributes to a more profound theoretical knowledge of brain function and disorders 
[13, 14]. 

7.2.4 PREDICTIVE MODELS

Machine learning (ML) algorithms can use neuroimaging data to predict disease 
progression, patient outcomes, and therapy responses. This is especially benefcial in 
personalized medical techniques. Predictive modeling uses ML algorithms to ana-
lyze neuroimaging data and forecast clinical outcomes such as disease progression, 
patient outcomes, and therapy responses. This technique is essential for personalized 
medicine, in which treatments and interventions can be tailored to specifc patients 
based on predicted insights. 

Enhanced diagnostic accuracy: Predictive models make it easier to discover neu-
rological disorders early on, allowing for more prompt intervention and disease man-
agement. It improves the ability to differentiate between comparable neurological 
diseases, resulting in more exact diagnosis. They promote personalized medicine; 
by predicting individual reactions to treatments, healthcare providers can adapt 
interventions to maximize effcacy while minimizing negative effects and identify 
high-risk patients who may require more severe therapy or monitoring. Predictive 
models improved patient outcomes by assisting in designing optimized treatment 
regimens that are tailored to the patient’s specifc condition, resulting in better over-
all outcomes. This helps in continuously monitoring illness progression and chang-
ing treatment regimens in real time using predictive insights [15]. 

Resource allocation: Predictive models can determine which patients are most 
likely to beneft from specifc treatments, ensuring that healthcare resources are 
spent wisely. They provides doctors with data-driven insights to help them make 
more educated decisions, hence improving patient care. These models aid in research 
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and development by helping discover new biomarkers for neurological illnesses by 
fnding predictive patterns in neuroimaging data. They improve clinical trial design 
and effcacy by employing predictive models to choose appropriate participants and 
endpoints. Predictive modeling in neuroimaging uses ML to help improve patient 
care through early diagnosis, personalized therapy, and better results. These models 
give vital insights that help doctors make informed decisions, improving the effcacy 
and effciency of neurological care [16]. 

7.2.5 ATLAS-BASED APPROACHES

AI can improve brain atlases by incorporating fresh imaging data, boosting anatomi-
cal landmark precision, and assisting with the localization of brain regions of inter-
est. Enhanced precision of anatomical landmarks incorporates fresh imaging data 
into brain atlases, enabling continual refning and enhanced accuracy and resulting 
in more exact localization of brain areas, which is critical for diagnostic accuracy 
and surgical planning. 

Improved localization of brain areas: Refned atlases provide precise and accu-
rate maps of brain areas, making it easier to identify small or obscure anatomical 
features. They improve localization and the correlation of anatomical abnormalities 
with functional defciencies, resulting in a better knowledge of neurological diseases. 

Guidance in surgical and therapeutic interventions: Accurate atlases help neuro-
surgeons plan and execute procedures, lowering the chance of injuring crucial brain 
areas. This helps to target specifc brain regions for therapies like deep brain stimu-
lation or tailored medication delivery [17]. 

Facilitation of research and education: Refned atlases are invaluable in neurosci-
entifc research because they provide a consistent reference for comparing anatomi-
cal and functional data across studies. They serve as complete teaching resources for 
medical students and professionals, improving their understanding of brain anatomy 
and function. 

7.2.6 HIGH-DIMENSIONAL DATA ANALYSIS

Tensor decomposition and manifold learning are useful techniques for handling and 
interpreting the high-dimensional data generated by neuroimaging investigations, 
allowing for a better understanding and visualization of complicated brain activity 
patterns. These techniques improve our understanding of the brain’s structure and 
function, resulting in more accurate diagnostic tools and treatments for neurological 
diseases. 

Enhanced data interpretation: Neuroimaging techniques generate massive 
amounts of high-dimensional data, which is diffcult to analyze. Tensor decomposi-
tion and manifold learning are useful techniques for simplifying and analyzing such 
data, resulting in better insights into brain function and pathology. 

Improved diagnostic accuracy: High-dimensional data analysis can reveal subtle 
patterns and abnormalities that regular analysis approaches may miss. Advanced 
pattern recognition enables the early diagnosis of neurological illnesses such as 
Alzheimer’s, Parkinson’s, and epilepsy [18]. 
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Personalized medicine is the practice of tailoring treatment strategies to indi-
vidual patients’ unique high-dimensional data profles. Such practice improves ther-
apy effcacy by focusing on specifc brain regions and functions uncovered through 
enhanced data analysis. Advanced research involves identifying novel biomarkers 
for a variety of neurological and mental diseases. Gaining better insights into the 
dynamic interactions of the brain will help to develop neuroscience [19]. 

7.3 OPTICAL IMAGING AND BRAIN-MACHINE INTERFACES 

Optogenetics is a technique that uses light to regulate neurons that have been geneti-
cally engineered to be light-sensitive. It enables precise regulation of neural activity 
in animal models, revealing details about brain function and behavior. 

Brain-machine interfaces (BMI) allow direct contact between the brain and
external devices, which has the potential to restore function in paralyzed people 
while also enhancing our understanding of neural code. 

Optical imaging techniques are generally noninvasive and repeatable, making 
them excellent for longitudinal research. Real-time monitoring of brain activity 
is useful for gaining insights into cerebral hemodynamics and oxygenation. Near-
infrared spectroscopy (NIRS) techniques are portable and can be employed at the 
bedside, allowing for brain monitoring in critical care settings such as neonatal 
intensive care units. They allow for the imaging of brain activity, which is useful in 
cognitive neuroscience and studying brain function in both health and sickness [20]. 

BMIs can restore motor functions in paralyzed or limb-amputation patients by 
allowing them to control prosthetic limbs or external devices. BMIs can help people 
with severe motor disabilities communicate more effectively, improving their qual-
ity of life. They can be used in rehabilitation programs to retrain motor functions 
following a stroke. BMIs can also be used in neurofeedback therapy to help patients 
regulate brain activity, which may aid in the treatment of diseases such as attention 
defcit hyperactivity disorder (ADHD) or anxiety [21]. 

7.4 BENEFITS OF AI-RELATED ADVANCES IN 
NEUROIMAGING TECHNIQUES 

CNNs provide signifcant advantages over standard neuroimaging techniques. These 
benefts include accuracy, effciency, and the ability to handle complex data. Here are 
several signifcant advantages: 

1. Automatic feature extraction, the traditional approach, identifes signifcant
image properties mostly through handcrafted features and topic exper-
tise. Manual feature extraction is time-consuming and subject to human
mistakes. CNNs learn and extract hierarchical features from raw image
data automatically, without the need for operator intervention. They cap-
ture intricate patterns and systems that may be invisible to human experts.
CNNs adapt to fresh data and improve performance over time. Variability
exists owing to differences in operators and subjective interpretations.
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Automatic feature extraction is often less accurate at detecting subtle or 
minor anomalies [21]. 

2. CNNs produce consistent results by eliminating human variability from the
equation. They can learn from enormous volumes of data and fnd minute
patterns, allowing them to detect and classify problems with greater precision. 
CNNs outperform established methods for tumor identifcation, segmentation, 
and classifcation. Traditional neuroimaging struggles with high-dimensional
data, necessitating dimensionality reduction approaches that may result in the
loss of valuable information. Such neuroimaging has limited ability to handle
multimodal data (for example, combining MRI, PET, and fMRI) [7, 22]. 

3. CNNs are capable of processing enormous amounts of high-dimensional
data effectively. They integrate multimodal data to enable more thorough
analysis, improving diagnostic accuracy and understanding of brain ill-
nesses. CNNs use innovative architectures and layers to effciently handle
and comprehend complicated data structures.

4. Once trained, CNNs can swiftly analyze and interpret neuroimaging data,
dramatically lowering diagnostic and analysis time. They enable real-time
processing and decision-making, which is vital in healthcare applications
where prompt intervention is required [9, 23].

7.5 EARLY DIAGNOSIS AND PROGNOSIS 

Traditional neuroimaging may miss early symptoms of disorders that are diffcult 
to identify using the human eye or traditional algorithms. Diagnosis is frequently 
based on obvious symptoms or severe disease stages. Such neuroimaging detects 
subtle changes and early indicators of neurological disorders, allowing for earlier 
diagnosis and treatment. Analyzing patterns and trends in imaging data over time 
can help predict disease progression and patient prognosis [5]. Performance varies 
substantially depending on the dataset and imaging settings. Traditional neuroimag-
ing is frequently adapted to individual objectives, with insuffcient generalization 
across varied applications. CNNs are good at generalizing across varied datasets and 
imaging circumstances because of their capacity to learn from diverse data sources. 
They provide reliable performance in a variety of neuroimaging tasks, including 
segmentation, classifcation, and detection [8, 24]. 

Traditional neuroimaging has had limited integration with new technologies like 
augmented reality (AR) and virtual reality (VR). CNNs are easily integrated with 
other cutting-edge technologies, improving visualization and interaction with neu-
roimaging data. They support sophisticated applications like surgical planning and 
navigation with AR and VR. 

7.6 LIMITATIONS OF ADVANCED 
NEUROIMAGING TECHNIQUES 

Advanced neuroimaging techniques, such as MRI and PET scans, have several 
restrictions, including cost and accessibility, technological constraints, invasive-
ness and safety concerns, interpretation diffculties, physiological limitations, and 



 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

 
 

 
 

 

 
 
 

 
 

 
 

 
 
 
 

ethical and privacy problems. These constraints can limit access for individu-
als and healthcare systems, particularly in low-income areas. Techniques such as 
fMRI and electroencephalogram (EEG) provide excellent spatial resolution but 
low temporal precision, whereas CT and PET require ionizing radiation. These 
limitations underline the importance of continued improvements and cautious 
consideration when using advanced neuroimaging techniques in both research 
and therapeutic contexts. 

7.7 CONCLUSIONS 

AI-based neuroimaging techniques, particularly those that use advanced models 
such as CNNs and GANs, provide dramatic advantages over traditional meth-
ods. These gains extend to data processing, analytical accuracy, and therapeutic 
applications, signifcantly improving the area of neuroimaging. AI approaches, 
like CNNs, automate the feature extraction process, minimizing the need for 
manual involvement and lowering the likelihood of human error. This automation 
improves accuracy in detecting and classifying neurological diseases, allowing 
for earlier and more reliable diagnoses than older techniques. GANs and other AI 
models can produce synthetic data to supplement existing datasets and overcome 
data scarcity constraints. This capacity guarantees more complete training datas-
ets, resulting in the creation of more robust and generalizable models. As a result, 
AI-driven systems provide consistent performance across a wide range of datas-
ets and imaging settings, outperforming traditional neuroimaging techniques. AI 
approaches, such as super-resolution GANs, improve the resolution and quality of 
neuroimaging data. This enhancement allows for the discovery of small anoma-
lies and improved visualization of brain regions, resulting in more accurate and 
detailed studies that conventional approaches may struggle to achieve. AI-driven 
neuroimaging processes are far faster than traditional methods, allowing for real-
time analysis and decision-making. This speed is signifcant in clinical applica-
tions that require prompt diagnosis and action, such as acute stroke detection 
and emergency treatment. The ability of AI models to generate high-quality syn-
thetic data minimizes the need for large and costly neuroimaging experiments. 
This reduction in data-collecting costs makes advanced neuroimaging techniques 
more accessible, allowing for wider use in both research and clinical settings. 
AI approaches standardize data processing and analysis, which reduces variabil-
ity caused by diverse imaging processes and equipment. This standardization 
improves the reliability and repeatability of neuroimaging studies, resulting in 
overall higher-quality research fndings and clinical outcomes. Advanced appli-
cations enabled by AI approaches include early identifcation of Alzheimer’s dis-
ease, precise localization of epileptic foci, and automated segmentation of brain 
tumors and MS lesions. These skills help with personalized treatment regimens, 
surgical outcomes, and patient management. 

In conclusion, AI-based neuroimaging techniques outperform traditional 
methods in terms of accuracy, effciency, and versatility. AI-driven techniques 
are transforming the feld of neuroimaging by leveraging automated feature 
extraction, synthetic data production, higher picture resolution, and consistent 
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performance, resulting in better diagnostic tools, more effective treatments, and, 
ultimately, better patient care. The use of AI in neuroimaging is a paradigm 
change that offers the promise of propelling neurological research and clinical 
practice to new heights. 
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8 Targeted Drug Delivery for
Neurological Disorders 

Bhupen Kalita 

8.1 INTRODUCTION TO TARGETED DRUG 
DELIVERY IN NEUROLOGY 

The nervous system is affected by varieties of neurological disorders ranging from 
degenerative diseases to acute injuries (Table 8.1). Central nervous system (CNS) disor-
ders contribute up to 6.3% of all diseases worldwide [1]. Alzheimer’s disease (AD) is a 
progressive neurodegenerative condition characterized by cognitive decline and mem-
ory loss, frst defned by Alois Alzheimer in 1906 [2]. Genetic studies have identifed 
risk factors associated with familial and sporadic forms of AD, infuencing personalized 
medicine approaches [3]. Research fndings designate the role of amyloid-beta and tau 
proteins in the pathogenesis of AD, leading to the development of novel biomarkers for 
early detection [4]. Parkinson’s disease (PD) is a movement disorder and is character-
ized by motor symptoms like tremors and bradykinesia and generally seen later in life, 
attributed to the loss of dopaminergic neurons in the substantia nigra of the brain [5]. 

Stroke is an acute neurological disorders and leading cause of disability and mortal-
ity worldwide. Advances in antiplatelet therapy and endovascular procedures have con-
tributed in acute stroke care [6]. Moreover, neuroimaging innovations like computed 
tomography (CT) angiogram and diffusion-weighted and susceptibility-weighted mag-
netic resonance imaging (MRI) have upgraded stroke diagnosis and prognosis [7]. 
Management of autoimmune diseases like amyotrophic lateral sclerosis (ALS) and 
multiple sclerosis (MS) have benefted from genome-wide association studies (GWAS) 
and gene editing technologies, offering avenues for targeted therapies [8]. 

8.2 OVERVIEW OF CONVENTIONAL DRUG 
DELIVERY METHODS 

The conventional drug delivery methods in neurological disorders aimed at effec-
tively transporting therapeutic agents across the blood−brain barrier (BBB) to reach
specifc regions of the central nervous system (CNS). 

8.2.1 ORAL ADMINISTRATION

Oral drug delivery for brain disorders faces challenges due to poor BBB perme-
ability and enzymatic degradation of the drug agent in the gastrointestinal tract 
(GI). Advances in formulation technologies aim to enhance drug bioavailability 
[9]. For chronic illness, oral drug administration offers greatest convenience in 
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TABLE 8.1 
Neurological Disorders and Their Symptoms, Pathophysiology, 
and Common Risk Factors 

Neurological Pathophysiological 
Disorders Symptoms Mechanism Risk Factors 
Alzheimer’s disease Gradual decline of Accumulation of Aging, diabetes, stroke, 

memory, reasoning, abnormal neuritic heart problems, 
and handling of plaques and depression, genetic 
complex tasks, neurofbrillary tangles history, lifestyle. 
behavior, and in the brain leading to 
personality. loss of neurons. 

Stroke Trouble in speaking and Ischemic stroke- High blood pressure, 
understanding, defcient blood and heart disease, 
confused, slur words; oxygen supply to the diabetes, smoking, 
numbness, weakness or brain; hemorrhagic high blood lipids, 
paralysis in the face, stroke-bleeding or excessive alcohol use. 
arm, or leg. leaky blood vessels in 

the brain. 

Parkinson’s disease Tremor in hands, arms, Nerve cells in the basal Advancing age, men 
legs, jaw, or head; ganglia become are more likely to 
muscle stiffness, impaired leading to develop PD, genetics, 
slowness of movement, decreased secretion of environmental causes, 
impaired coordination. dopamine that causes brain trauma. 

movement problems. 

Epilepsy and Staring, jerking of the Disrupted balance Genetic factors, 
seizures arms and legs, between excitatory and developmental brain 

stiffening of the body, inhibitory abnormalities, 
loss of consciousness, neurotransmitters at infection, traumatic 
breathing problems. the synaptic level can brain injury (TBI). 

result in seizure 
activity. 

Multiple sclerosis Numbness in one or Formation of plaques in 15−50 years of age,
more limbs, tingling, CNS along with women are at more 
electric-shock infammation, risk, North Europeans 
sensations (Lhermitte demyelination, axonal are at higher risk, 
sign), lack of damage, and axonal those living at 40˚C 
coordination, unsteady loss. It is an and above, family 
gait or inability to autoimmune disease history, certain viral 
walk, partial or caused by autoreactive infections and 
complete loss of vision, immune cells that autoimmune diseases. 
usually in one eye at a traverse BBB and 
time. attack the CNS. 

Migraine Intense throbbing or dull Imbalance in brain Family history, 
aching pain in head, neurotransmitters, hormonal changes in 
stiff or tender neck, including serotonin, women, adolescence 
lightheadedness. calcitonin gene-related and younger age. 

peptide (CGRP). 

(Continued) 
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TABLE 8.1 (Continued) 
Neurological Disorders and Their Symptoms, Pathophysiology, and 
Common Risk Factors 

Neurological Pathophysiological 
Disorders Symptoms Mechanism Risk Factors 

Neuroinfections Fever, pain, swelling, Occur if microorganisms Certain age groups, 
redness, impaired invade the nervous poor immune system, 
function. In the case of system. Encephalitis, certain geographical 
some viral infections, meningitis, HIV-AIDS, locations, autoimmune 
drowsiness, confusion, fungal infections, disease, smoking, 
and convulsions may parasitic infections, brain surgery. 
occur. prion diseases, bacterial 

infections such as Lyme 
disease, tuberculosis, 
syphilis, brain abscess. 

Brain tumor Headaches, seizures Tumors can invade, Risk increases with 
(fts), nausea and infltrate, or supplant age, genetics, and 
vomiting, drowsiness, normal parenchymal exposure to radiation. 
mental or behavioral tissue, disrupting 
changes, such as normal function, and 
memory problems. can cause increased 

intracranial pressure. 

Amiotrophic lateral Muscle twitches; muscle Degeneration of Genetics, exposure to 
sclerosis cramps; tight and stiff pyramidal Betz cells in heavy metal, 

muscles (spasticity); the motor cortex, pesticides, head 
muscle weakness anterior horn cells of trauma, stroke, 
affecting an arm, a leg, spinal cord, lower magnetic feld, and 
or the neck. cranial motor nuclei of hypertension. 

the brainstem. 

Cerebral aneurysm Headaches, eye pain, Ballooning from wall of Genetics, advancing 
vision change. the blood vessels in age, alcohol 

the brain. If it expands consumption, 
and the blood vessel atherosclerosis, 
wall becomes too thin, cigarette smoking. 
the aneurysm will 
rupture and bleed. 

self-medication. Several lipids have been shown to affect the BBB and facilitate drug 
delivery into the brain after systemic circulation: oleic acid, triolein, alkylglycerols, 
and conjugates of linoleic and myristic acid [10]. These examples suggest exploring 
novel lipids for oral drug administration for neurodisorders. 

8.2.2 INTRAVENOUS INJECTION

Intravenous administration is advantageous as it bypasses the GI tract and gives 
highest bioavailability. However, large molecular size and hydrophilicity often limit 



  

 

 
 

  

  

  

 

93 Targeted Drug Delivery for Neurological Disorders 

BBB penetration. Strategies like use of viral vectors, nonviral vectors (nanoparticle, 
exosomes, etc.), prodrug design, or conjugation with BBB-shuttle peptides improve 
CNS uptake [1]. 

8.2.3 INTRATHECAL INJECTION 

The intrathecal injection method has many important applications, such as treating 
meningitis or spinal cord injuries, spinal anesthesia, pain management, and che-
motherapy. This injection method bypasses the BBB and delivers a drug directly 
into the CNS. The drug is injected into the cerebrospinal fuid (CSF) via lumbar 
puncture [11]. 

8.2.4 INTRANASAL DELIVERY 

The drug is carried through the olfactory and trigeminal nerve pathways to the brain. 
This route, due to shorter physical distance, offers rapid delivery of drug into the 
brain. Also, the nose-to-brain lymphatic system has been proposed as a novel target 
for neurological disorders [12]. 

8.2.5 INTRA-ARTERIAL INFUSION 

This method identifes the carotid or vertebral arteries supplying blood to the brain, 
to which drug is directly infused. It is particularly benefcial for acute stroke inter-
ventions. In recent decades, intra-arterial administration of anticancer drugs has 
been considered a suitable alternative drug delivery route to intravenous and oral 
administration [13]. 

8.3 IMPORTANCE OF TARGETED DRUG DELIVERY 
FOR NEUROLOGICAL DISORDERS 

Targeted drug delivery into the brain has gained attention of researchers world-
wide in the treatment of neurological disorders, addressing the challenges of 
BBB penetration, site-specifc drug release, and minimizing systemic side effects 
(Table 8.2). The BBB is an important immunological feature of the CNS, which 
restricts most drugs from entering the brain [14]. Targeted delivery systems have 
demonstrated signifcant advantages over conventional therapies in neurological 
disorders like Alzheimer’s disease and Parkinson’s disease by encapsulating anti-
infammatory agents or neuroprotective compounds within nanoparticles to miti-
gate neuro-infammation and oxidative stress [15]. A drug molecule must possess 
the required physicochemical properties for effcient permeation across the BBB. 
However, fnding all these properties in drug molecules is a formidable task, and 
indeed most drugs fall away from these properties [16]. Nonpermeability is often an 
issue with macromolecular pharmaceuticals, including peptides, proteins, antibodies, 
and oligonucleotides [17]. There have been prodigious efforts to enhance drug dif-
fusion into the brain parenchyma, including chemical modifcation of drugs, chemi-
cally or osmotically opening of tight junctions, physical disruption of the BBB layer, 
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TABLE 8.2 
Comparison of Conventional versus Targeted Drug Delivery in Neurological 
Disorders 

Conventional Drug 
Parameters Delivery Targeted Drug Delivery 
BBB permeability of the drug Poor High 

Amount of drug reaching the brain Generally less High 

Site specifcity Less or nil High 

Enzymatic degradation of the drug More Less 

Dose requirement More Less 

Off-target effect More Less 

Systemic side effect More Less 

Peripheral exposure of the drug More Less 

Patient convenience Generally more with Poor patient convenience in the 
oral administration invasive methods 

Self-medication Not possible with all Not possible with all drugs/ 
drugs/methods methods 

Self-regulation Not possible Possible with programmable 
drug delivery methods 

Protein and peptide delivery Less effcient Effcient 

Economy Less price High price 

and the use of specifc carriers/transporters. Each method has its advantages and 
limitations. Chemical modifcation of a drug needs to go through the Investigational 
New Drug (IND) application, which is a very time-, effort-, and resource-consuming 
process [18]. Furthermore, the prodrug approach may exhibit altered pharmacoki-
netics, resulting in lower effcacy or toxicity in other organs. Disruption of the BBB 
by injecting a hyperosmolar substance or physically by ultrasound enhances drug 
transport but also enables paracellular transport of blood toxins into the brain [19]. 
This technique is limited mainly to small molecules. 

8.4 CHALLENGES IN NEUROLOGICAL DRUG DELIVERY 

8.4.1 BBB PENETRATION 

The BBB is a highly selective membrane that restricts the passage of substances from 
the bloodstream into the brain parenchyma. This barrier is composed of endothelial 
cells with tight junctions, astrocytes, and pericytes, forming a strong defense mecha-
nism against any solute, including blood-borne toxins and pathogens, which also 
limits the delivery of therapeutic agents [20]. BBB maintains brain homeostasis and 
prevents many potentially benefcial drugs from reaching their targets in the brain, 
making treatment of diseases like Alzheimer’s, Parkinson’s, and stroke very bur-
densome. Also, proteolytic enzymes capable of rupturing neuroactive blood-borne 
solutes and drugs in brain capillary endothelial cells (BCEC) form an additional 
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enzymatic barrier [21]. The systemic drug delivery to the brain is greatly hampered 
by the BBB, which rejects almost 98% of substances. Biopharmaceuticals such as 
recombinant proteins or monoclonal antibodies (mAb), which have emerged as a 
promising part of drug development, have failed in treating CNS diseases due to 
their poor access to the brain across the BBB. For instance, Bevacizumab (Avastin) 
and Natalizumab (Tysabri), which are FDA-approved monoclonal antibody-based 
therapeutics for treating brain cancer and multiple sclerosis, respectively, do not 
cross the BBB [22]. 

8.4.2 PHYSICOCHEMICAL PROPERTIES 

Some of the unfavorable physicochemical properties of drugs pose diffculties in 
drug delivery to the CNS. One of the major challenges arises from the size and 
molecular weight of drugs. Large molecules or those with high molecular weights 
face diffculty crossing the BBB due to its tight junctions and low permeability to 
hydrophilic and large molecules, whereas lipophilic drugs might penetrate the BBB 
more readily but can encounter issues with effcient transport mechanisms within the 
CNS once inside. Also, the degree of ionization of drugs at physiological pH decides 
the fate of the drug in membrane permeation. The unionized, lipophilic fraction 
of drugs can diffuse across membranes more easily, whereas ionized and hydro-
philic drugs struggle due to their inability to pass through lipid-rich barriers like the 
BBB [21]. All pharmacokinetic calculations in drug delivery have dependence on the 
extent of plasma protein drug binding. Additionally, the presence of effux transport-
ers such as P-glycoprotein (Pgp), the multidrug resistance protein (MRP) family, 
and breast cancer resistance protein (BCRP) actively pumps drugs out of the brain 
endothelial cells, further limiting the central distribution of drugs that are benefcial 
to treat CNS diseases. Therefore, modulation of ATP-binding cassette (ABC) effux 
transporters at the BBB forms a novel strategy to enhance the penetration of drugs 
into the brain [23]. 

8.4.3 SYSTEMIC AND OTHER OFF-TARGET SIDE EFFECTS 

Even after drugs successfully penetrate the BBB, they may still exhibit off-target 
effects. These effects can occur due to the nonspecifc distribution of drugs in the 
brain, affecting unintended areas and leading to adverse reactions or diminished 
effcacy. Strategies to mitigate off-target effects include targeted drug delivery sys-
tems [21]. Moreover, the complexity of neurological diseases adds another layer of 
challenge. For example, Risperidone, which is used in the management of schizo-
phrenia and bipolar disorder, has side effects like weight gain. In the treatment of 
Parkinson’s disease, L-DOPA is a commonly prescribed drug. It is found to have 
side effects including dyskinesia, nausea, and orthostatic hypotension. Lamotrigine, 
which is a drug of choice in the treatment of epilepsy and bipolar disorder, causes 
skin rashes, headache, and dizziness. Attention defcit hyperactivity disorder is 
treated with Methylphenidate. It results in unwanted conditions like insomnia, 
decreased appetite, and increased heart rate. Clozapine is used in the management of 
treatment-resistant schizophrenia. Clozapine on chronic use causes agranulocytosis, 
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weight gain, and sedation [24]. These examples illustrate how medications used to 
treat neurodisorders often have signifcant side effects, suggesting scope for develop-
ing precisely targeted drug for neurodisorders. 

8.5 NOVEL APPROACHES 

The need for innovative technology in brain drug delivery was strongly felt in 
1914 when Salvarsan, a drug for syphilis, did not enter the brain. For more than 
two decades afterward, researchers attempted to develop small molecular-sized 
high lipophilic drugs only. Then during 1980s, endogenous BBB carrier-mediated 
transport and receptor-mediated transport systems were identifed and goals for drug 
design were guided by the identifed transporters. A range of novel drug delivery 
approaches and devices has been developed to enhance effciency of drugs for brain 
disorders since 1990s (Figure 8.1). 

8.5.1 NANOPARTICLES FOR DRUG DELIVERY ACROSS THE BBB 

Due to their unique properties, i.e., size and surface area, nanoparticles offer promis-
ing solutions to facilitate drug transport across the BBB. Polymeric nanoparticles can 
encapsulate drugs and protect them from enzymatic degradation, prolonging systemic 
circulation time and increasing the possibility of BBB permeation. Additionally, sur-
face-modifed nanoparticles tailored with ligands for targeting specifc receptors on 

FIGURE 8.1 Flowchart showing various drug targeting approaches to the brain for site-
specifc, sustained, and controlled drug effect in the management of neurological disorders. 
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BBB endothelial cells can enhance their transport into the brain parenchyma. Also, 
various lipid-based nanoparticles have been proposed in recent research, such as lipo-
somes and solid lipid nanoparticles, which facilitate their transport across the BBB, 
and they can encapsulate both hydrophilic and hydrophobic drugs [25]. 

8.5.2 LIPOSOMES AND MICELLES AS DRUG CARRIERS 

Both hydrophilic and hydrophobic drugs can be encapsulated in the liposomes and lipid-
based vesicles with aqueous cores and lipoidal shells and thereby provide a stable envi-
ronment ensuring enhanced drug permeation, solubility, and bioavailability. Their ability 
to traverse the BBB and additional advantage of biocompatibility make them ideal for 
brain targeting [26]. Liposomes functionalized with ligands like transferrin or antibodies 
have demonstrated signifcant BBB penetration and specifc neurotargeting by virtue of 
their ability to bind with predefned receptors, thus reducing off-target effects [27]. Puri 
and coworkers reported that pH-sensitive liposomes release drugs selectively in response 
to the acidic microenvironment of neuroinfammatory sites, enhancing therapeutic eff-
cacy [28]. Micelles are composed of amphiphilic molecules generally surfactant, which 
facilitate to solubilize hydrophobic drugs and enhance their delivery to target sites. 
Micelles have been shown to offer controlled release profles and stability in biological 
fuids, which is advantageous for sustained drug delivery to neurons [29]. 

8.5.3 DENDRIMERS AND POLYMERS FOR TARGETED DELIVERY 

Dendrimers are highly branched macromolecules that offer high drug entrapment, 
precise control of particle size, and surface functionality [30]. Their multifunctional 
nature allows for conjugation with targeting ligands and imaging agents, enhancing 
site-specifc drug delivery [31]. Polymeric nanoparticles provide versatility in encap-
sulating both hydrophobic and hydrophilic drugs while stabilizing them against 
enzymatic degradation. Surface modifcation with ligands further improves their 
binding specifcity [32]. Research in polymer science has succeeded in developing 
stimuli sensitive materials that enable controlled drug release within targeted brain 
regions [33]. 

8.5.4 FOCUSED ULTRASOUND IN OPENING THE BBB 

Focused ultrasound (FUS) is a noninvasive technique for transiently opening the 
BBB, increasing permeability of drugs to the brain. By exploiting acoustic waves, 
FUS induces microbubble oscillation at the BBB site, leading to localized mechani-
cal disruption and increased permeability. This approach allows therapeutic agents 
that are otherwise barred by the BBB [34]. Many studies have claimed the versatility 
of FUS in delivering a range of therapeutics, including chemotherapy agents and 
antibodies [35]. FUS offers spatial and temporal precision that minimizes systemic 
side effects and provide a safer alternative to invasive methods. Optimization of FUS 
parameters is very important for maximal BBB opening while ensuring tissue safety 
and uniform drug distribution within the brain parenchyma [36]. 
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8.5.5 ADVANCEMENTS IN ULTRASOUND-GUIDED DRUG DELIVERY 

Ultrasound-guided drug delivery for neurodisorders is a potential noninvasive 
approach to target brain tissues, offering precise and localized control of drug per-
meation. This approach not only minimizes systemic side effects but also enhances 
drug bioavailability in target areas. Many research attempts have demonstrated the 
potential of ultrasound-guided drug delivery in various neurodisorders. For example, 
FUS has been utilized to deliver chemotherapy agents and neuroprotective drugs for 
treating brain tumors and neurodegenerative diseases like Alzheimer’s. Encouraging 
outcomes have been demonstrated in ultrasound guided delivery of the therapeutic 
agents oxygen, 1,3-bis(2-chloroethyl)-1-nitrosourea, triptolide, plasmid DNA, doxo-
rubicin, muscimol, and propofol for various brain disorders [37]. 

8.6 NOSE-TO-BRAIN TARGETED DRUG DELIVERY 

8.6.1 ANATOMY OF THE NASAL CAVITY AND ITS RELEVANCE FOR DRUG DELIVERY 

The nasal epithelium comprises various cell types, including ciliated and nonciliated 
cells, tight junctions, and enzymes like cytochrome P450, which together infuence 
drug metabolism and bioavailability [38]. The nasal cavity can serve as an entry 
point for drugs to reach the brain. Its highly vascularized mucosa and proximity to 
the brain via the olfactory and trigeminal nerves facilitate effcient drug transport 
directly into the CNS. Intranasal delivery provides a practical, noninvasive method 
of bypassing the BBB to deliver therapeutic agents to the brain and spinal cord. 
This technology allows drugs that do not cross the BBB to be delivered to the CNS 
within minutes. It also directly delivers drugs that do cross the BBB to the brain, 
eliminating the need for systemic administration and its potential side effects. This is 
possible because of the unique connections that the olfactory and trigeminal nerves 
provide between the brain and external environment [39]. 

8.6.2 NASAL FORMULATIONS FOR NEUROLOGICAL DISORDERS 

Nasal formulations, generally liquid and semiliquid in nature, are applied as drops 
or spray that can be inhaled to the deeper regions of the nasal cavity. The nasal 
route offers advantages like noninvasive administration, ease of use, and potential 
for self-medication, particularly benefcial in chronic conditions requiring long-term 
treatment [38]. Various neurological conditions, including Alzheimer’s disease, 
Parkinson’s disease, and epilepsy, beneft from nasal formulations due to their abil-
ity to achieve rapid onset of action and improved patient compliance [40]. Recent 
advancements in formulation technologies, such as nanoemulsions, liposomes, and 
polymeric nanoparticles, have further enabled sustained drug release in the nasal 
mucosa, prolonging therapeutic effects [41]. Intranasal delivery has been used to tar-
get a wide variety of therapeutics to the CNS. For example, the following classes of 
therapeutics have successfully been intranasally delivered to the CNS: neurotroph-
ins, neuropeptides, cytokines, polynucleotides, and small molecules (like chemo-
therapeutics and carbamazepine). Consequently, ability to deliver insulin by nose to 
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the CNS without altering blood glucose could provide an effective means to improve 
glucose uptake and utilization and reduce cognitive defcits in patients with memory 
disorders [39]. 

8.7 IMPLANTABLE DEVICES FOR TARGETED DRUG DELIVERY 

8.7.1 INTRACRANIAL DRUG DELIVERY SYSTEMS 

Intracranial drug delivery systems represent those methods where the drug is directly 
injected to an identifed location through the skull or implanted near the brain, aim-
ing to precisely target drugs to the brain while minimizing systemic exposure and 
side effects. They encompass a range of approaches, including implantable devices, 
convection-enhanced delivery (CED), and direct intraparenchymal injections, each 
tailored to specifc therapeutic goals [42]. Implantable devices, such as drug-eluting 
polymers and biodegradable wafers, provide sustained release of drugs directly to 
affected brain regions, enhancing therapeutic effcacy. CED utilizes pressure-driven 
infusion to distribute therapeutics into targeted brain areas, overcoming diffusion 
barriers and achieving homogeneous drug distribution [43]. 

8.7.2 PROGRAMMABLE PUMPS FOR PRECISE DOSING 

A programmable pump is a drug reservoir programmed as per the dosing need of 
the patient and represents a signifcant advancement in precision medicine, par-
ticularly in the context of targeting drugs to the brain and avoiding systemic side 
effects [44]. One prominent example is the use of programmable infusion pumps in 
treating Parkinson’s disease, where precise dosing of levodopa can optimize thera-
peutic outcomes. These pumps enable continuous, intracerebral delivery of drugs, 
maintaining therapeutic levels within the brain while reducing fuctuations that often 
occur with oral administration [45]. In neuro-oncology also, programmable pumps 
have shown encouraging results. They facilitate localized delivery of chemotherapy 
agents directly into brain tumors [46]. 

8.7.3 BIODEGRADABLE IMPLANTS FOR SUSTAINED RELEASE 

Biodegradable implants have been in use for achieving sustained drug release in 
brain targeting applications. These implants are designed to degrade over time, 
releasing therapeutic agents directly into the brain parenchyma and leaving less pos-
sibility of systemic side effects. Biodegradable wafers loaded with chemotherapeu-
tic agents for the treatment of glioblastoma multiforme (GBM), a highly aggressive 
brain tumor. These wafers, such as Gliadel® (carmustine implant), are implanted at 
the surgical site following tumor resection. Over several weeks, the wafer gradually 
degrades, releasing carmustine directly into the tumor site, thus improving local 
drug concentration and reducing systemic exposure [47]. 

Advancements in polymer science have enabled the development of implants with 
modifed degradation profles and drug release kinetics. Polymers like poly(lactic-
co-glycolic acid) (PLGA) are commonly used due to their biocompatibility and 
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ability to degrade into nontoxic byproducts, ensuring safety while delivering thera-
peutics effectively. Also, the use of chemically modifed PLGA in delivery systems 
such as functionalizing PLGA to create surface modifed particles has generated 
new ideas for targeted delivery. PLGA additionally provides a platform to develop 
external stimuli responsive drug delivery systems. Due to their versatile nature, they 
have been investigated for various neurological conditions beyond cancer, includ-
ing neurodegenerative diseases and epilepsy, demonstrating potential for sustained 
release of neuroprotective agents [48]. 

8.8 GENE THERAPY AND RNA-BASED APPROACHES 

8.8.1 VIRAL VECTORS FOR TARGETED GENE DELIVERY 

Gene therapy has undergone many transitions in past 40 years. Viral vectors have 
been applied in targeted gene delivery to the brain. Viruses such as adenovirus, 
adeno-associated virus (AAV) and lentivirus are commonly employed due to their 
ability to transduce neurons and glial cells with high specifcity and minimal immune 
response. These vectors are processed by recombinant technology to carry thera-
peutic genes that can correct genetic mutations, enhance neuroprotection, or modu-
late neuronal activity [49]. Clinical trials using AAV vectors have shown promising 
results in treating neurogenetic disorders like autosomal recessive genetic disorders, 
spinal muscular atrophy and certain types of inherited blindness. Lentiviral vectors, 
with their ability to integrate into the host genome, offer long-term gene expression, 
making them suitable for chronic neurological conditions. Despite these advance-
ments, challenges such as immune responses to viral vectors and potential off-target 
effects necessitate ongoing research to refne vector design and delivery techniques. 
Nevertheless, viral vectors hold immense potential in advancing gene therapy in 
neurology, offering hope for treating previously incurable brain disorders [50]. 

8.8.2 RNA INTERFERENCE (RNAI) IN NEUROLOGICAL DISORDERS 

RNA interference (RNAi) has emerged as a promising therapeutic approach for 
treating neurological disorders by selectively silencing disease-causing genes at the 
mRNA level. This mechanism involves delivering small interfering RNAs (siRNAs) 
or microRNAs (miRNAs) to target cells, where they bind to complementary mRNA 
sequences, leading to degradation or inhibition of translation. In neurology, RNAi 
holds potential for treating a spectrum of disorders including Parkinson’s disease, ALS, 
spinocerebellar ataxia, neuropathic pain, neurodegenerative diseases like Alzheimer’s 
and Huntington’s diseases, as well as neurological conditions such as epilepsy and spi-
nal muscular atrophy [51]. Clinical trials utilizing RNAi-based therapies have shown 
encouraging early results in conditions like amyloidosis and Huntington’s disease [52]. 

8.8.3 CRISPR-BASED THERAPIES FOR GENETIC NEUROLOGICAL DISORDERS 

Gene editing begins with identifying the defective gene causing the disorder, followed 
by disrupting the gene sequence using a very precise tool called CRISPR/Cas (clustered 
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regularly interspaced short palindromic sequences/CRISPR-associated). Cas com-
prises a family of nucleases synthetized by bacteria as part of their adaptive immunity 
against viruses, of which Cas9 (CRISPR-associated protein 9) is the most commonly 
utilized version for gene editing [53]. The CRISPR-Cas9 system allows precise editing 
of genetic sequences by inducing double-strand breaks, which can be repaired to intro-
duce desired genetic changes or to disrupt faulty genes [54]. CRISPR presents hope for 
better treating conditions such as Duchenne muscular dystrophy, Rett syndrome, and 
Huntington’s disease, where mutations in single genes contribute to disease pathology 
[55]. The application of CRISPR/Cas9 gene-editing technology is expanding to address 
etiological research, treatment, and intervention of neurodegenerative disorders such as 
Alzheimer’s disease [56]. Many research attempts have focused on optimizing delivery 
methods, targeting disease-causing genes and associated factors in neurological dis-
orders [57]. Early preclinical studies and clinical trials have demonstrated signifcant 
evidence for CRISPR-based therapies in correcting genetic defects [58]. 

8.9 INTEGRATION OF IT IN THE MANAGEMENT 
OF NEURODISORDERS 

Brain−computer interfaces (BCIs) have been used to control prosthetic limbs, pro-
vide visual feedback, and improve cognitive functions such as attention and memory. 
A number of strategies have been used in the past to improve motor, somatosen-
sory, and cognitive functions, as well as to assist with daily activities. Available 
literature indicates that BCI can provide a personalized and interactive therapeutic 
environment for neurological rehabilitation as well as monitoring treatment effec-
tiveness [59]. Karageorgos and coworkers proposed HALO (Hardware Architecture 
for LOw-power BCIs), a general-purpose architecture for implantable BCIs. HALO 
enables tasks such as treatment of disorders (e.g., epilepsy, movement disorders) and 
records data for studies on the brain [60]. Recent advancements in virtual reality 
(VR) immersive technologies provide new tools for the development of novel and 
promising applications for neurological rehabilitation. This technique gives virtual 
tasks that encourage and facilitate the patient’s empowerment and involvement in the 
rehabilitation process. Recently, VR has been applied in certain neurological condi-
tions such as dementia, stroke, spinal cord injury, Parkinson’s, and MS [61]. 

In the past two decades, several models have been developed based on machine 
learning and deep learning in healthcare data analysis, which can be used in the pro-
cessing of a variety of data sets. Thomas et al. (2009) developed a new discriminative 
flter bank (FB) common spatial pattern algorithm to extract subject-specifc FB for 
motor imagery (MI) classifcation [62]. Liu et al. attempted to enhance the detection 
of four-class motor imagery electroencephalogram (MI-EEG) signals through the 
utilization of a parallel spatial–temporal self-attention-based convolutional neural 
network (CNN) approach [63]. The use of MI-BCI has been observed to be advanta-
geous in upper-limb stroke rehabilitation. BCIs offer avenues to treat neurological 
disorders, assist in understanding brain function, and interface the brain with the 
digital world. However, their wider adoption depends on achieving adequate real-
time performance, meeting power constraints, and adhering to regulatory safety 
requirements for chronic implantation [59]. 
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8.10 CLINICAL TRANSLATION AND FUTURE DIRECTIONS 

8.10.1 CHALLENGES IN TRANSITIONING FROM PRECLINICAL TO CLINICAL STUDIES 

Despite years of efforts in CNS drug development, recent FDA approval of 
Zolgensma, viral-based gene therapy, is the frst approved BBB-crossing biolog-
ics. In an era of biopharmaceuticals such as recombinant proteins being the most 
approved drugs for other diseases, their scope is greatly limited by poor deliv-
ery of such macromolecules across BBB, which refects the poor rate of clinical 
translation (~8%) of CNS drugs. Transitioning from preclinical studies to clinical 
trials for brain-targeting therapies poses signifcant challenges, primarily due to 
the complex nature of the BBB and safety concerns [1, 64]. The absence of reli-
able and effcient in vitro BBB models resembling in vivo barrier properties is a 
major problem for researchers in developing successful therapy for CNS disor-
ders. Moreover, preclinical models may not fully match human disease pathology 
or the dynamic BBB properties. Ethical considerations, patient heterogeneity, and 
regulatory requirements further complicate the transition, requiring vast preclini-
cal data and complete safety profles [65]. 

8.10.2 REGULATORY CONSIDERATIONS FOR TARGETED NEUROLOGICAL THERAPIES 

The complex nature of brain-targeting therapies, which often involve cutting-edge 
technologies, necessitates clear regulatory pathways. Therefore, emphasis should be 
given to ensure safety, effcacy, and ethical standards throughout clinical trials and 
beyond. Regulatory agencies require data of preclinical observations demonstrat-
ing effcacy and robust safety profles, particularly concerning potential off-target 
effects and long-term consequences [58]. Ethical considerations regarding informed 
consent, patient privacy, and the use of novel technologies in vulnerable populations 
are also paramount [38]. 

8.10.3 FUTURE PROSPECTS AND EMERGING TRENDS IN THE FIELD 

Transformation from conventional to novel strategy is the future of drug targeting 
in neurodisorders. Recent biomedical research has made many steps forward that 
bring hope for brain drug targeting. All of the mechanisms behind the disease 
pathologies are still not very clear, and therefore a unique therapy does not seem 
to be the winning approach to solve the problem for all. One signifcant trend is the 
development of precision medicine approaches formulated to individual patient 
profles [66]. Advancements in nanotechnology bring avenues for drug delivery 
innovations to cross the BBB [25]. Continued efforts are required in bringing 
innovations in nanoparticles tailored with ligands and overcoming the drug trans-
port limitations due to effux transporters. Engineering natural exosomes derived 
from mesenchymal stem cells (MSCs), dendritic cells (DCs), or macrophages to 
both deliver therapeutics and modulate the immune responses to tumors or in 
neurodegenerative disease (NDD) can allow for targeted personalized therapeutic 
approaches [67]. Clinical trials have shown initial success in correcting genetic 
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mutations responsible for conditions like spinal muscular atrophy and certain 
forms of inherited blindness, giving clues for broader applications. Nonetheless, 
precise genome-editing faces constraints such as modest effciency, delivery chal-
lenges, and off-target effects [68]. Future research in neuro-drug delivery must 
consider addressing all these constraints. An interesting emerging trend is the 
integration of neuroimaging technologies with drug delivery systems, enabling 
real-time monitoring of drug distribution and therapeutic response in the brain 
[69]. There is scope of innovations in the development of biodegradable implant-
able devices and programmable pumps that allows controlled and sustained drug 
delivery directly into the CNS. 

8.11 CONCLUSION 

Brain-targeted drug delivery offers a transformative path forward in neurother-
apeutics, particularly enhanced BBB transport, drug bioavailability, and patient 
compliance. It also offers immense potential for minimizing off-target effects 
within the brain and systemic side effects. There are research scopes in refn-
ing delivery technologies such as nano-drug delivery, gene therapy, implants, 
programmable pumps, noninvasive methods like nose-to-brain delivery, and ultra-
sound-assisted drug delivery to enhance the ability of therapeutics to traverse the 
BBB and achieve optimal therapeutic concentrations. Application of personalized 
medicine approaches, by capitalizing qualitative and quantitative details of bio-
markers and genomic data, are expected to revolutionize neurological treatments. 
Furthermore, technological innovations and a growing understanding of disease 
mechanisms at the molecular level are supplementing development of novel drug 
delivery strategies for neurodisorders. BCI technologies have been advancing 
to meet the goals in treating neuro-impaired patients, particularly motor nerve 
functions. Although signifcant progress has been made, continued collaboration 
between researchers in academia and industry as well as regulatory agencies is 
highly appreciated to meet challenges and translate promising preclinical fndings 
into clinically viable therapies. Regulatory bodies also need to evolve in their poli-
cies to accommodate novel technologies and ensure patient safety throughout the 
drug development process. 
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9 Intelligent Deep 
Learning Algorithms 
for Autism Spectrum 
Disorder Diagnosis 

V. Thamilarasi, R. Roselin, P. Pushpa, M. Kannan, 
and B. P. Sreejith Vignesh 

9.1 BACKGROUND 

Neuroscience is a signifcant science feld that covers study of the nervous system. 
The nervous system supports every activity of the human body and stimulates 
every action in the body. In ancient times, neurological disease identifcation and 
treatment for patients took more time and did not have much of a success rate. 
At the same time, many diseases were not identifed and there was no knowl-
edge of neurological disorders. In olden days, the trepanation method was used 
to open the skull, and around 5000 BCE the medicinal plant papyri was used 
for treatment. In 300−250 BCE, only medical practitioners had knowledge about 
ventricles, cerebrum, and cerebellum. Neuroscience experiments started during 
Greek civilization, and many of them showed interest to experiment and identify 
that the brain is basic for every action and that any problem in the brain affects 
normal human activity. 

After many decades, Galen described clearly that sensation information was han-
dled by the cerebrum, muscle actions were controlled by the cerebellum and a few 
muscles monitored by some special nerves. From 108 to 208 AD, physicians from 
China, Persia, and Arab countries performed the frst brain operation. The invention 
of paper and the printing press shifted the medical world into the next stage by print-
ing books to indicate diseases. In 1543, the frst brain dissecting operation was car-
ried out by Andrea’s Vesalius, and drawings of all portions of the brain were printed 
as images. Following Vesalius, many researchers expanded his work and recorded 
various brain functions, including pineal glands. 

In the eighteenth and nineteenth centuries, many experiments were performed in 
the feld of neuroscience, and maximum people learned about neurological diseases. 

Table 9.1 shows the development stage of neurological disease diagnosis. 
From the eighteenth to twentieth centuries, neurological disease diagnosis cre-

ated awareness among people. Much research developed with respect to nerve cells, 
refexes, and biochemical changes and electrical signals in neurons. 
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TABLE 9.1 
Neurological Disease Diagnosis 

Author Year Disease Diagnosis Stages 
Matthew Baillie & Jean Cryveilhier 1799 and 1829 Stroke lesions 

Luigi Galvani 1737–1798 Nerve electricity 

Charles Bell 1774–1842 Developed Bell-Magendie law 

Francois Magendie 1783–1855 Developed Bell-Magendie law 

Jean Perre Flourens 1820 Motricity, sensibility 

Emil du Bois-Reymond, Johannes Peter 1820 Adjacent neurons of electrical 
Muller, & Hermann von Helmholtz state 

J. E. Purkinje 1787–1869 Statement of neurons 

John Martyn Harlow 1848 Study of cortex 

Paul Broca 1824–1880 Experiment on cerebral cortex 

Carl Wernicke – Brain function for language 
comprehension 

Richard Caton – Rabbit & monkey cerebral 
hemispheres 

Herman Munk 1878 Outstanding electricity in dogs 
& monkeys 

Harvey Cushing 1909 Postcentral gyrus 

Camillo Golgi & Santiago Ramony Cajal 1890 Nerve cells (Nobel Prize) 

Eugen Bleuler 1911 Autism 

James Parkinson 1817 Parkinson disease 

Hippocrates Fifth century BCE Stroke 

Galen 1550 BCE Migrane 

9.2 INTRODUCTION 

In this digital world, everyone lives their life in scheduled way, and many of them do 
not give much thought to take care of their health. The environmental changes and 
unusual timings of food totally change human body activities, which results in more 
health issues. Autism is one such disease that seeks more diagnosis from research-
ers and medical practitioners. Normally it affects children and is identifed during 
their development stage only. One with autism is not able to communicate, emotional 
imbalance arises, and weak interpersonal relationships result between the child and 
family and society. Mental health is basic for human well-being and supports normal 
activities. Brain activities regulate every neuron involvement and organ movement. 
In olden days, brain diseases were recorded manually, and patients’ oral presentation 
was considered for disease diagnosis and treatment. Due to technological develop-
ment, many new tools such as artifcial intelligence techniques play a dominant role 
in disease diagnosis. This chapter analyzes and describes experiments using models 
such as convolution neural network (CNN), recurrent neural network (RNN), long 
short term memory (LSTM), visual geometry group-16 (VGG-16), and residual net-
works (ResNet-50) for autism detection. 
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9.3 RESEARCH OBJECTIVE 

• The symptoms of ASD are the same as some other neurological diseases, 
but identifying those disease can be achieved by machine learning (ML) 
and deep learning (DL) algorithms. 

• The research seeks to enhance accuracy and minimize processing time. 
• Various ML and DL algorithms with optimization techniques will improve 

the performance of the model. 

9.4 TYPES OF NEUROLOGICAL DISORDERS 

The problems in the central nervous system produce neurological disorders. They 
can happen to people of any age group. Figure 9.1 shows the types of neurological 
disorders. 

Alzheimer’s disease: It affects the portion of brain responsible for thinking, mem-
orizing, learning, and intellectual activity. It can be treated by regular physiotherapy 
and regular stimulation of brain thinking activities. 

Acute spinal cord injury: The spine, or vertebrae, is a building block of bones. 
The spinal cord is a collection of nerves that transfer messages between brain and 
other parts of body. These messages are related to movement and sensation. Acute 
spinal cord injury is a result of bruises in the core that tears the portion of core or 
completely tears it. Accidents or falls may result in such injury. As result, this injury 
may result in permanent disability or death for a child or adult. 

Parkinson’s disease: It slow down the body movement and occurs mostly to older 
people. It results loss of smell, excess salivation, mood disorder, constipation, insom-
nia, depression, and loss of cognition and is a leading disease around the world. It is 
also considered a palsy disorder. 

FIGURE 9.1 Types of neurological disorders. 
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Multiple system atropy: It damages the nerve cells in the brain and occurs rarely 
for humans. It affects movement, balance, breath control, bladder control, and low 
blood pressure. It usually afficts those ages 30 to 60. 

Rett syndrome: It occurs due to genetic mutation and is a progressive neurode-
velopment disorder. People with this syndrome cannot respond quickly, have lower 
cognitive abilities, and are slower in communication. Verbal communication takes 
long time for children with Rett syndrome. 

Fetal alcohol spectrum disorder: Alcohol consumption in pregnancy affects the 
fetus, resulting in fetal alcohol spectrum disorder. It creates severe effects in face 
forming, skeleton and bone development, and cardiac development. It is a lifelong 
disorder. 

Cerebral palsy: It mainly affects the fetus brain and is a combination of multiple 
disorders. Cerebral palsy mainly disturbs motor activities, cognitive abilities, sensa-
tions, and results in pressure ulcers, seizures, and problems with feeding, listening, 
hearing, vision, etc. 

Traumatic brain injury: The World Health Organization declared that around 
60 million people have been affected by traumatic brain injury annually. It hap-
pens in two ways: damaged and nondamaged brain injury. Damaged brain injury 
occurs by falls, accidents, assaults, child abuse, domestic violence, etc., and non-
damaged brain injury occurs by seizure, tumors, metabolic disorder, drug over-
dose, etc. 

Amyotrophic lateral sclerosis: This fatal neurological disorder affects motor 
movements. Also termed Motor Neurons Disease, it results in paralysis. It appears in 
the age group from 54 to 67 years. 

Multiple sclerosis: This disease affects the central nervous system (CNS) when 
the body produces abnormal activities against CNS. Hence it affects brain, spinal 
cord, and optic nerves. 

Migraine: Disorders in the brain and cord result in migraine, which creates pain 
in blood vessels and nerves. It is also called neurovascular pain syndrome and is fol-
lowed by depression, irritability, cyclical vomiting, and loss of appetite. 

Brain tumor: Brain tumors may be cancerous, noncancerous, or benign. They 
grow slowly and affect the normal life cycle of the brain. Sometimes, they result 
death for benign patients. Malignant tumors grow rapidly and create the most severe 
problem for patients, requiring immediate attention from a medical practitioner. In 
the United States, 5,000 children become affected by brain tumors with different 
types gliomas, medulloblastomas, and ependymomas. 

Ataxia: This disease affects the voluntary muscle movement and causes cerebel-
lar dysfunction. The disorder destroys the activities of cerebellum, spinal cord, brain 
stem, cortex, and basal ganglia. 

Epilepsy: This neurological disease creates metabolic disorders, cerebral trauma, 
stroke, and tumors. It affects the signals in the brain. 

Stroke: This condition creates damage to the brain and disturbs cerebral function, 
which leads to brain attack. Based on severity and causes in the human body, the 
type of stroke is decided. Interruption in blood fow creates ischemic stroke, which 
destroys nearly two million neurons, bursting blood vessels and leading to hemor-
rhagic stroke or acute stroke. 
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Dementia: This disease is caused by decline of brain activity and results 
in overthinking, decline in normal performance of human activity, memory 
loss, and unawareness about the patient’s own problems. Vascular and fronto-
temporal are two types of dementia. Alzheimer’s disease patients can suffer 
dementia. 

9.5 AUTISM SPECTRUM DISORDER 

A brain is continuously growing organ to some age limit. This growth involves nor-
mal motor activities, muscular activities, and cognitive skill development. The physi-
cal processing stage is different for every child, but ASD children’s life activities 
differ from others, and they miss actual milestones in their life. 

• They do not stand alone and walk properly. 
• They do not show facial expressions or make eye contact. 
• They repeatedly do few actions inappropriate for their age like clapping, 

waving, pointing some direction, etc. 
• They are more obsessive with their objects and easily get upset by changes 

in regular activities. 
• They are more sensitive to smell, taste, etc. 
• They are unable to learn and grow the way that non-ASD children do. 
• They are unaware of social interaction and environment. 
• At the same time, they are intelligent in some skills compared to other 

children. 

Applied behavior analysis helps them to interact with society and improve commu-
nication skills. 

Early intensive behavioral intervention was developed particularly for kids below 
fve years of age. 

Cognitive behavior therapy provides real-time skills to manage particular situa-
tions and help them to identify their own strengths and weaknesses. According to 
law 108-177, education and school-based therapies allow autistic children to learn 
freely at school and gives more interaction among others. 

Nutritional therapy allows children to get more bone development foods and eas-
ily digestive foods. 

Medication treatment can control autism behavior by changing children’s focus 
on some other skills and allows for antipsychotic drug intake. 

Parent-mediated therapy groups children with their parents to do some activities 
to improve communication skills, attention therapy, and behavioral therapy, thereby 
improving the nature of autistic kids. 

Occupational therapy helps in identifying children’s own interests and abilities 
and encourages them to pursue those. 

Physical therapy helps them to sit, stand, walk properly, and rectify movement 
problems. 

Social skills training allows for communication, effective conversation, handling 
bullying behaviors, etc. 
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Speech language therapy improves interaction and communication among other 
skills. 

Farooq et al. (2023) utilized support vector machine and logistic regression to 
classify the ASD factors and detection of ASD. Four different datasets were ana-
lyzed for children, for which the proposed model achieves 98% accuracy, and for 
adults, for which 81% accuracy as achieved [1]. 

Al-disbat et al. (2018) experimented with fuzzy data mining algorithms for ASD 
kids for classifcation in the University of California, Irvine Machine Learning 
(UCIML) repository dataset. The researchers evaluated various models of FUZZY 
and found the FURIA model produced better results than others [2]. Thabath 
et al. (2020) proposed rules in the machine leaning (ML) model for classifcation 
and showed the actual cause for this disease. The researchers used this model in 
experiments with children, adolescents, and adults datasets with boosting, bagging, 
decision trees, and rule induction algorithms and produced higher accuracy [3]. 
Wingfeld et al. (2020) developed an ML embedded mobile application to monitor 
autism detection and identifed that the random forest algorithm AUCROC produced 
accuracy of 98%, and this application helps in many ways to identify ASD [4]. Leroy 
et al. (2024) analyzed the ML model, three deep learning (DL) models, and various 
ensemble models for ASD detection and found that majority voting with BiLSTM 
Ml achieved 100% precision, 91% accuracy, 100% specifcity, and a 0.91 F1 score 
[5]. Reddy et al. (2023) used a facial image dataset for CNN, VGG16, VGG19, and 
the EffcientNet BO classifcation and attained accuracy of 84.66%, 98.50%, and 
87.9% for each algorithm [6]. 

Alsaade et al. (2022) developed a model with web application and DL algorithms 
such as CNN, Xception, VGG19, and NASNETMobile to classify the facila autism 
image dataset and attained accuracy of 78% for NASNETMobile, 80% accuracy for 
VGG19, and 91% accuracy for the Xception model [7]. Khosla et al. (2021) proposed 
a DL model to classify facial images of healthy and autistic children and removed 
the duplicate images. The Mobile net model attained the accuracy of 87% in clas-
sifcation [8]. 

Research gaps include the following: 
• Identifcation and treatment of ASD takes more time, which leads to proper 

medical practice. 
• Many researchers experiment with DL and ML for ASD analysis, yet they 

struggle to attain high accuracy. 
• Many researchers experiment with feature datasets instead of image 

datasets. 

9.6 METHODOLOGY 

The failure of ML technique was the basic reason to develop a DL algorithm. DL is 
an advanced technology of ML and artifcial intelligence (AI). It can handle large 
sets of data and doesn’t need external feature extraction techniques. It contains mul-
tiple layers of neural networks and hidden layers, and every process is carried out 
promptly. This architecture can process large data in accurate manner within short 
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time. DL algorithms play a signifcant role in the medical feld due to its effcient 
and timely analysis [9]. Every algorithm performs its role in unique way due to its 
interconnected neurons and ability to learn from the given data [10]. DL models have 
an ability to capture dominant features and works in an end-to-end fashion. It plays 
a dominant role in classifcation, object detection, segmentation, speech recognition, 
sentiment analysis, medical analysis, predictive analysis, fraud detection, recom-
mender systems, etc. [11, 12]. This research analyzed DL techniques such as CNN, 
RNN-CNN, LSTM-CNN, VGG-16, and ResNet-50 for autism detection. 

9.6.1 DATASETS 

The facial dataset for ASD is picked from the Kaggle dataset, and it contains 
1,468 autism fles and 1,468 nonautism fles. The training folder contains 1,628 for 
autism and 1,628 for nonautism. At the same time, the test folder contains 150 for 
autism and 150 for nonautism images. The validation folder contains 50 autism and 
50 nonautism images. A total of 5,874 images were experimented with for this study. 
Figure 9.2 shows the autism and nonautism images in the dataset. Image resizing is 
carried out for image preprocessing. 

Figure 9.3 shows the overall methodology of the ASD classifcation. 

9.6.2 CNN 

This network was developed to execute grid information and mainly used for image 
analysis. Convolution layer, activation function, stride, padding, pooling layer, batch 
normalization, fattening, and fully connected layers are the basic operations and 
building layers for CNN. Convolution layers works with input and flters by dot prod-
uct and produce feature maps by capturing dominant features. Pooling layers are 
utilized to reduce the dimensionality of feature maps and can be either max pooling 
or average pooling. Figure 9.4 shows the layers and architecture of CNN [13]. 

FIGURE 9.2 Autism and nonautism images. 
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FIGURE 9.3 Schematic model of workfow. 

The max pooling fetches the maximum value from the feature map by fltering, 
and average pooling considers the average value from the feature map region. This 
research utilized the concept of max pooling. The activation function helps to iden-
tify the nonlinearity in the model and learned complex features. Every layer used 
the concept of the same padding to protect the edge features by adding zero. Fully 

FIGURE 9.4 CNN layer architecture. 
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connected layers work as same as dense layers in ML and fetch the fnal feature maps 
with dominant patterns. The activation function sigmoid produces binary output for 
classifcation. 

9.6.3 RNN 

This network processes sequential and temporal data (see Figure 9.5). Hidden 
layers in RNN capture data from a previous sequence with the help of hid-
den layers. It works similar to CNN, and it also has memory to capture pre-
vious data. The output depends on previous data. The important property of 
RNN is the hidden state or memory state, which reduces the complexity of 
parameters. 

The recurrent unit is the basic unit, and it keeps the hidden state. The hidden state 
holds the knowledge of previous time step and is updated as per the following for-
mula. The current state can be calculated by Ht = f (Ht−1, xt )., where Ht is the pres-
ent state, Ht 1−  is the previous state, and xt  is the initial setup. The activation function 
performs as follows: 

= tanh W H  t )Ht ( hh  t−1  + W xxh 

where Whh is recurrent neuron weight and Wxh  is the input neuron weight. The out-
put layer is computed as yt = Why  , Ht, where yt is output and Why is the output layer 
weight. 

Back propagation helps to update these parameters. This process is repeated until 
the calculation is made for output. The fnal output is compared with actual out-
put, and bias is propagated back to the network for changing the weight. Hence it 
remembers every detail of the process. RNN combined with CNN performs image 
classifcation based on image features [14, 15]. 

FIGURE 9.5 RNN 
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9.6.4 LSTM 

LSTM utilized the concept of RNN, and it has a structure to maintain read, write, 
and forget states. It reads and writes signifcant information and forgets unnecessary 
information. Developed by Hochreiter and Schmidhuber, the process overcame the 
problem of vanishing gradient from RNN. It maintains long-term dependencies and 
consists of three gates: the forget gate, the input gate, and the output gate. The forget 
gate simply forgets the unwanted information, the input gate captures new informa-
tion, and the output gate carries and passes the present time stamp information to 
the next state. This full process is called single time stamp. Figure 9.6 presents the 
single time stamp of LSTM. 

LSTM networks works on sequential data so that image features were extracted 
frst and combined architecture of LSTM with CNN attained the desired classifcation. 

9.6.5 VGG-16 

This DL model is based on the CNN architecture and has 16 convolution layers and 
is made up of the basic constructive layers of CNN. A. Zisserman and K. Simonyan 
are the developers of VGG-16. 

VGG-16 has one input layer, 13 convolution layers, fve pooling layers, three fully 
connected layers, and one output layer. 

9.6.6 RESNET-50 

ResNet-50 is a combination of CNN architecture with residual blocks. The residual 
blocks help to recover the degradation problem. ResNet-50 allows the direct delivery 
of data through skip connections. It acts next to the convolution and batch normal-
ization layer. ResNet-50 captures positive values, thereby learning critical patterns 
of data. The bottleneck convolution layer is special structure of ResNet and is a 
collection of three convolution layers, the batch normalization layer, and the Relu 
activation function. These convolution layers use 1 × 1, 3 × 3, and 1 × 1 flters, 
prevent information loss, and extract dominant features from the data, and the fnal 
flter helps to restore the information. Skip Connections allows unchanged input to 
the convolution layer output. All information is securely transferred to the next layer 
without any loss. Hence it performs the deeper learning of networks. 

FIGURE 9.6 LSTM gates. 
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9.7 RESULT AND DISCUSSION 

This section summarizes the performance of experimented DL algorithms with 
proper evaluation metrics. The evaluation metrics accuracy, recall, F1 score, and 
precision are utilized to discuss the outcome of the framework. 

Accuracy: It assess the true prediction from the overall given prediction. 

TruePositive + TrueNegative 
Accuracy = (9.1) 

TruePositive TrueNegative FalsePositive FalseNegative+ + + 

Precision: It shows the correctly predicted positive instances from overall 
positive classes. 

True Positive 
Precision = 

True Positive + False Positive 
(9.2) 

Recall: It measures the correct prediction of actual positive classes. 

True Positive
Recall = 

True Positive + False Negative 
(9.3) 

F1 score: This determines the harmonic mean between precision and recall 
and also shows distribution of unequal classes. 

Precision Recall* F1score = 2* (9.4) 
Precision + Recall 

Table 9.2 and Figure 9.7 show the performance of deep experimented models in 
percentage. 

Figure 9.8–9.12 demonstrate the accuracy and loss for each classifcation model. 
Using information from Figures 9.8 to 9.12, Figure 9.13 shows the DL model clas-

sifcation performance. 

FIGURE 9.7 Performance of deep experimented models. 
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TABLE 9.2 
Performance of Deep Experimented Models 

Models Precision Recall F1 Score Accuracy Loss 
CNN 84 89 93 95 1.63 

RNN-CNN 79 85 87 90 1.67 

LSTM-CNN 80 86 89 92 1.59 

VGG-16 81 87 90 94 1.54 

ResNet-50 87 92 97 99 1.47 

FIGURE 9.8 CNN classifcation. 

FIGURE 9.9 RNN-CNN classifcation. 

FIGURE 9.10 LSTM-CNN classifcation. 
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FIGURE 9.11 VGG-16 classifcation. 

FIGURE 9.12 ResNet-50 classifcation. 

FIGURE 9.13 Accuracy and loss for DL models 
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9.8 CONCLUSION 

ASD is a silent disease that gets worse with the long-run growth of afficted children. It 
totally affects the social behavior, understanding, communication, and physical activi-
ties of the children. Early identifcation may control the severeness of the ASD [16–18]. 
This chapter tries to identify the better classifcation algorithm for ASD facial image 
recognition for autistic and nonautistic children. It proposes fve DL models for autism 
detection, which include CNN, RNN-CNN, LSTM-CNN, VGG-16, and ResNet-50. 
The CNN model achieves an accuracy of 95%, RNN-CNN attains an accuracy of 
90%, 92% accuracy for LSTM-CNN, 94% for VGG-16, and 99% for ResNet-50. As 
a result ResNet-50 attains the highest result for ASD classifcation. This chapter fnds 
that every model performs well in classifcation, and differences between them are 
very minor, but ResNet outperformed the other models. Hence this chapter provides a 
solution to identify autistic children at low-cost implementation. 

9.9 FUTURE ENHANCEMENT 

For ASD detection, a golden metric dataset is not available for public usage. 
Upcoming researchers need a proper dataset for ASD detection. It will create a gate-
way to analyze various advanced architectures with AI integration. 
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10 Advanced Neuroimaging 
with Generative 
Adversarial Networks 

Basil Hanaf, Mohammad Ubaidullah Bokhari, 
and Imran Khan 

10.1 INTRODUCTION 

With the recent strides in medical science, computer science stretching has started 
showing promising results since it can foresee the advancements required for medi-
cal science in many ways. Computational intelligence is one of the arms of artifcial 
intelligence (AI) that has changed the face of medical imaging. More specifcally, 
it changes human decision-making processes with complex algorithms and data-
driven approaches. The application of computational intelligence techniques in 
medical imaging has been very instrumental in sharpening image resolution, facili-
tating diagnosis with accuracy, and therefore smoothening operations to yield highly 
improved outcomes for patients. These technologies extend all the way from tradi-
tional machine learning (ML) models to state-of-the-art deep learning (DL) net-
works for establishing fully automated systems to analyze images with an accuracy 
that matches, and at times goes beyond, human experts. 

In sharp contrast, a technology among them, called generative adversarial net-
works (GANs), was frst invented in 2014 by Ian Goodfellow and his fellow col-
leagues with an aim to raise the quality level of image generation, videos, and voice 
recordings. One way of putting this proposal was to develop a system in which two 
neural networks, a generator and a discriminator, would work in a competing way. 
It means the generator tries to produce data that cannot be distinguished from real-
world data, while a discriminator tries to correctly classify the generator’s output 
versus real data. The mechanism of this competition is what enables both networks 
to learn and improve over time. Initial applications for GANs are directed toward 
improving image processing and computer graphics, having broader implications 
for other areas such as semisupervised learning, domain adaptation, and data aug-
mentation [1]. GANs are therefore one of the advancements in the feld of AI, more 
specifcally in the domain of medical imaging. GANs involve two neural networks − 
the generator and the discriminator − engaging in a continuous contest that 
improves the quality and utility of generated images over time. In neuroimaging, 
GANs have become quite useful. They not only improve image quality but also 
generate synthetic yet very real images of the human brain that have proved very 
useful in the training of medical professionals without having to compromise the 
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privacy of patients. It is an important capability in a domain where high-quality, 
annotated datasets are few and the concerns for privacy are of high priority. 

GANs provide improved quality, availability, and utility of imaging data, making 
them very critical in accurate diagnostics and research. The developments made to 
date in the application of GANs in neuroimaging are in some critical areas, includ-
ing GANs that have transformed neuroimaging through the improvement of the 
quality of images, augmentation of data, anomaly detection, and automation in seg-
mentation. They take low-resolution images and transform them into high-resolution 
outputs, hence enabling doctors and researchers to see small details in the image for 
the diagnosis of brain tumors, vascular anomalies, degenerative diseases, and so on. 
Also, GANs generate artifcial neuroimaging data to enlarge datasets and give a richer 
basis for the training of diagnostic algorithms without breaching patient confdential-
ity. They can also learn the distribution of normal anatomic structures and identify 
abnormalities at an early stage of disease detection. Besides, they provide automated 
segmentation of brain structures, which is complex, reducing the time and potential 
human error involved in a clinical setting. Such models are designed with privacy in 
consideration by synthesizing de-identifed images, considering various privacy laws 
and ethical guidelines. GANs contribute to research and training by generating very 
realistic-looking pictures for educational purposes. Further development is accelerated 
by improvements in technology and demands coming from the clinics themselves [2]. 

This chapter aims to delve into the sophisticated realm of GANs and their trans-
formative impact on neuroimaging. The primary objectives are to: 

1. Establish the relevance 
2. Describe the technology 
3. Showcase applications 
4. Discuss challenges and ethics 
5. Explore future prospects 

Through these objectives, the chapter will provide a thorough introduction to the 
signifcant role that GANs play in advancing neuroimaging, setting the stage for a 
detailed discussion of their applications and implications in the subsequent sections. 
To fulfll these objectives, this whole chapter is further divided into eight sections, 
namely “Introduction,” “Literature Review,” “Foundational Principle of GANs,” 
“GANs in Neuroimaging: Enhancing Diagnostic Imaging,” “Practical Applications 
of GANs in Neurology, Ethical Considerations and Challenges,” Future Directions,” 
and Conclusion. 

10.2 LITERATURE REVIEW 

GANs have been used in neuroimaging just after a span of their discovery. GANs 
are being used by various researchers in various domains of medical sciences to 
make them more useful and effective. Among so many of them, Kossen et al. (2021) 
and Wang et al. (2023) worked on the subjects of applications of GANs in neuro-
imaging and clinical neuroscience. Kossen et al. applied GANs to generate syn-
thetic time-of-fight magnetic resonance angiography  (TOF-MRA) patches at the 
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vessel segmentation of the brain for increased data privacy and thus facilitating large 
labeled datasets [3]. Wang et al. (2023) indicated that GANs open up the path to the 
generation of realistic data for disease diagnosis, anomaly detection, and modeling 
of disease progression [2]. Seeliger et al. (2018) explore how GANs can be applied 
to reconstruct natural images from brain activity recorded with functional magnetic 
resonance imaging (fMRI) [4]. Dar et al. (2020) introduced a new approach that 
can substantially accelerate multicontrast MRI acquisition using GANs called recon-
structing-synthesizing GANs (rsGAN) [5]. Song et al. (2020) proposed a technique 
for the smallest set of smallest rings (SSSR) in positron emission tomography (PET) 
images using dual GANs. This approach avoids paired low- and high-resolution 
training data; it improved the image quality metrics to a large extent. Advanced 
deep-learning techniques are linked in a clinical setting within this study [6]. 

Moazami et al. (2024) proposed a probabilistic approach for MRI brain extrac-
tion by conditional generative adversarial networks (cGANs)to solve the problem 
of brain part segmentation from MRIs. This approach uses the cGAN model to 
generate a set of probable brain images, conditioned on an input head MRI, from 
which a pixel-wise mean image can be created as an estimate of an extracted 
brain and a standard deviation image, and for quantifying prediction uncertainty. 
This facilitates getting more accurate segmentation, leading to valuable uncer-
tainty estimates attached to the segmentations, hence ensuring fuller reliability 
in the neuroimaging analysis course [7]. In that regard, Logan et al. 2021 review 
DL methodologies, more specifcally convolutional neural networks (CNNs) and 
GANs, for Alzheimer’s disease (AD) classifcation in neuroimaging data. The 
authors have found that CNNs extract highly complex features from imaging 
data, enhancing greatly the accuracy of AD diagnosis. Integration of Ensemble 
Learning with CNNs, and the use of GANs for generating synthetic imaging data 
to overcome issues related to data scarcity, can aid in the early and accurate diag-
nosis of AD and improve management and treatment [8]. 

Gao et al. 2022 proposed a DL framework for the imputation and classifcation 
of multimodal brain images in AD. In particular, the TPA-GAN integrates pyramid 
convolution, attention modules, and disease classifcation tasks to generate missing 
PET data from MRI, ensuring that generated images retain details of the disease. 
A pathwise transfer dense convolution network (PT-DCN) exploits full multimodal 
images to extract and fuse features from both MRI and PET for accurate classi-
fcation of diseases [9]. Jung et al. (2022) proposed a conditional GAN with a 3D 
discriminator to generate high-quality 3D MRI images for the prediction of AD pro-
gression. The architecture of the cGAN model itself embeds an attention-based 2D 
generator, a 2D discriminator, and a 3D discriminator. In that way, it will be smooth 
when transitioning through slices and maintain high-quality 3D structural consis-
tency [10]. Schlaeger et al. (2023) explored the worth of artifcial T2-weighted fat-
saturated images generated by a generative adversarial network in the reduction of 
spine imaging scan times. The results indicated that synthetic T2-w fat-saturated (fs) 
images were not different in apparent Signal-to-Noise Ratio and apparent Contrast-
to-Noise Ratio from actual T2-w fs images [11]. 

Bouman et al. (2023) investigated the accuracy of AI-generated double inversion 
recovery (DIR) and phase-sensitive inversion recovery (PSIR) images in detecting 
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cortical and juxtacortical lesions in multiple sclerosis (MS) patients. A temporal 
recurrent generative adversarial network (TR-GAN) has been proposed to deal with 
the challenge of incomplete longitudinal MRI datasets in AD progression analysis 
[12]. Table 10.1 is a detailed tabular comparison of the related papers based on key 
factors such as focus, methodology, key fndings, dataset, and evaluation metrics. 

The table is extremely systematic in laying out the key points of each study, so 
there is no problem in seeing exactly how each contribution fts into the broader con-
text of neuroimaging and GAN applications. 

TABLE 10.1 
GAN-Based Neuroimaging Studies Comparison 

Evaluation 
Focus Methodology Key Findings Dataset Metrics 
Synthetic TOF-MRA GANs High similarity and Custom dataset Dice coeffcient, 
patches for (DCGAN, predictive Hausdorff 
brain vessel WGAN-GP, properties in distance 
segmentation [3] WGAN-SN) synthetic data 

GANs in Various GAN GANs improve Multiple PSNR, SSIM, 
neuroimaging for architectures diagnosis and neuroimaging accuracy 
disease diagnosis prediction datasets 
and progression accuracy 
modeling [2] 

Natural image DCGAN Reconstructed fMRI data Behavioral tests 
reconstruction from images resemble (image 
brain activity via the original stimuli identifcation) 
GANs [4] 

Accelerated rsGAN Improved MRI ADNI dataset PSNR, SSIM, 
multicontrast MRI quality and scan MSE 
using GANs [5] effciency 

PET image SSSR with Enhanced PET Clinical PSNR, SSIM, 
super-resolution dual GANs image resolution neuroimaging NRMSE 
using GANs [6] and diagnostic datasets 

accuracy 

Probabilistic brain cGAN Improved Multiple Accuracy, 
extraction via segmentation neuroimaging uncertainty 
cGANs [7] accuracy and datasets estimation 

uncertainty 
estimation 

DL for AD CNNs, GANs, Improved AD ADNI dataset Accuracy, 
classifcation using ensemble classifcation balanced 
MRI [8] learning accuracy accuracy 

Multimodal brain TPA-GAN, Enhanced image ADNI dataset Accuracy, 
image imputation PT-DCN quality and PSNR, SSIM 
and classifcation in diagnostic 
AD [9] accuracy 

(Continued) 
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TABLE 10.1 (Continued) 
GAN-Based Neuroimaging Studies Comparison 

Evaluation 
Focus Methodology Key Findings Dataset Metrics 
Synthetic T2-w fs GAN- Improved image Multicenter PSNR, SSIM, 
images for spine generated quality and spine imaging aSNR, aCNR 
imaging [11] synthetic diagnostic dataset 

images accuracy for spine 
imaging 

AI-generated DIR AI-generated Higher lesion Multicenter MS Lesion detection 
and PSIR for images detection accuracy dataset accuracy, ICC 
MS lesion and reliability 
detection [12] 

Simulating EEG data GANs Realistic EEG data Clinical EEG PSNR, SSIM 
using GANs [13] simulation datasets 

Group difference GANs with GAN-generated ADNI dataset ICC for 
testing using spectral data can be used reliability 
GAN-generated graph theory for reliable group 
data [14] difference testing 

Short scan time GAN-based Comparable quality Clinical PSNR, SSIM, 
amyloid PET image restoration to true images with amyloid PET diagnostic 
restoration using reduced scan times datasets accuracy 
GANs [15] 

Tensorizing Tensorizing Improved AD ADNI dataset Classifcation 
GAN for AD GAN with classifcation with accuracy, 
assessment [16] high-order fewer labeled PSNR, SSIM 

pooling samples 

Multisession future TR-GAN with Enhanced prediction ADNI dataset MSE, 
MRI prediction recurrent accuracy and MS-SSIM, 
with TR-GAN [17] connections dataset PSNR, 

completeness balanced 
accuracy 

10.3 FOUNDATIONAL PRINCIPLES OF GANs 

GANs are complex mathematical constructs applied to the concepts of computer sci-
ence and are made of two separate neural networks in dynamic rivalry: a generator 
and a discriminator. A generator is used to create images that seem real; hence, it 
serves with the meaning of “faking” data as real as possible. On the other side, the 
discriminator acts as the critic that checks whether the received data are a part of the 
real dataset or were generated by the generator artifcially. The setup puts the net-
works in a competitive environment in which the improvement of one network forces 
the other to do better as well, hence improving its functionality with time. As shown 
in Figure 10.1, the neural networks, discriminator (represented by D), and generator 
(represented by G), are training adversely to attain a state where the generator can 
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FIGURE 10.1 Working of generative adversarial neural networks. 

generate real data from random noise. In the initial training phase, the discriminator 
discriminates the data bits as real or fake, which helps the generator learn to generate 
real data, as discussed previously. Discriminator training is a part of the very initial 
phase of the setup, as it can learn to differentiate. 

In contrast, the arrangement works to contend between the two networks in a zero-
sum game, where Generator G is trying to amplify the probability and Discriminator 
D is trying to reduce that. GANs are a class of ML frameworks designed to generate 
new data samples that are similar to a given dataset. To understand the mathematical 
formulation of GANs, one must understand the mathematics of its working com-
ponents. As mentioned previously in this section, the GAN consists of two neural 
networks, a generator (G) and a discriminator (D), which are trained simultaneously 
in a game-theoretic setting where one network’s gain is the other’s loss. This process 
is formulated as a minimax optimization problem. Here, Generator (G) is a neural 
network that takes a random noise vector z∼pz(z) (usually drawn from a simple dis-
tribution like Gaussian or uniform) as input and maps it to a data space to produce a 
synthetic data sample G(z). Also, the other part of the set discriminator (D) is a neu-
ral network that takes a data sample as input (either from the real dataset x∼pdata(x) 
or from the generator G(z)) and outputs a scalar representing the probability that the 
input data are real (from the training data) rather than fake (generated by G). 

The GAN framework aims to train G and D in a two-player minimax game. The 
discriminator D is optimized to maximize the probability of correctly classifying 
real and fake data samples, while the generator G is trained to minimize the likeli-
hood that D correctly distinguishes between real and fake samples. The objective 
function for GANs can be formulated as: 

min max V  (D G  ( )  −G D  , ) = Ex p~ data x( ) [logD x ]+ Ez p~ ( )z �̆log (1 D (G z( )))�� 
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Here, ~Ex pdata x( ) represents the expectation of the log probability that the dis-
criminator correctly identifies real samples from the data distribution pdata(x), and 
E log D G zz p z ( )( )− ( ) 1 ( )~  represents the expectation of the log probability that the 
discriminator correctly identifies fake samples generated by G(z) as not coming from 
the real data distribution.

The training process involves the two alternating steps:

1. Discriminator update: Given a batch of real samples from the data  
distribution and a batch of fake samples G(z) generated by the generator, 
the discriminator is updated to maximize its ability to distinguish between 
real and fake samples. This is done by maximizing the objective function 
V(D,G) with respect to D.

2. Generator update: After updating the discriminator, the generator is 
updated to minimize its success in fooling the discriminator. This is 
achieved by minimizing V(D,G) with respect to G.

The optimization is typically performed using stochastic gradient descent (SGD) or 
its variants (like Adam), with updates alternating between D and G. The update rules 
for the discriminator are evaluated as:
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where Dθ  represents the parameters of the discriminator, η\etaη is the learning rate, 
and mmm is the batch size.

The generator update is evaluated as:
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where Gθ  represents the parameters of the generator.
The training process is designed to reach a Nash equilibrium, where the generator 

produces samples that are indistinguishable from the real data (i.e., D(G(z)) = 0.5), 
meaning that the discriminator cannot differentiate between real and fake samples 
better than random guessing.

The GAN objective is closely related to minimizing the Jensen−Shannon (JS) 
divergence between the real data distribution pdata(x) and the generator’s distribution 
pg(x). The optimal discriminator, given a fixed generator, is:

 D x
P x

P x P x
data

data g
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Ideally, as the training progresses, the generator’s distribution pg(x) converges to 
the real data distribution pdata(x), minimizing the JS divergence to zero [1].
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There are several GAN variants that modify the original objective function or 
architecture to improve stability, convergence, or performance for specifc tasks 
that have a wide spectrum of applicability in medical imaging. Examples include 
Wasserstein GANs (WGAN), least squares GANs (LSGAN), conditional GANs 
(cGAN), CycleGAN, and StyleGAN, among others. GANs have been remarkably 
successful in multimedia processing tasks. They can create entirely new images and 
videos or enhance the quality of existing multimedia data. GANs can even generate 
images of people or places that are completely fctitious. Recently, GANs have found 
applications in security felds. Given their effectiveness, GANs are being explored 
to predict security threats and analyze systems for vulnerabilities. This method of 
vulnerability prediction has the potential to create more robust and effcient security 
systems, proactively addressing security attacks [18]. The following is a high-level 
pseudocode that outlines how GANs can be implemented for this purpose: 

Initialize: 
• Generator network G with parameters theta_g 
• Discriminator network D with parameters theta_d 
• Set the number of training epochs and batch size 
• Load real neuroimaging dataset 

For each epoch: 
For each batch in the dataset: 

// Train the Discriminator 
1. Generate noise samples from a random distribution (e.g., Gaussian) 
2. Use Generator G to create fake images from noise 
3. Sample real images from the actual neuroimaging dataset 
4. Feed both real and fake images to Discriminator D 
5. Calculate discriminator loss: 

– Loss on real images (D should output 1) 
– Loss on fake images (D should output 0) 

6. Update the discriminator parameters (theta_d) to minimize the loss 
//Train the Generator 
7. Generate new noise samples 
8. Use Generator G to create fake images from noise 
9. Feed fake images to Discriminator D 

10. Calculate generator loss: 
– Loss based on D’s output (G wants D to output 1 for fake 

images) 
11. Update generator parameters (theta_g) to minimize the loss 
// Optionally, evaluate the performance on the validation set 
// The networks are trained until the specifed epochs are completed or 

until convergence criteria are met 
// Optionally, further refne or adjust models based on specifc imaging 

modalities or analysis needs 

This pseudocode provides a template for how GANs can be structured for the task 
of generating and refning synthetic medical neuroimages. In practice, the specifcs 
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of the network architecture, loss functions, and training details (like learning rates, 
optimizer choices, and handling of training stability issues) would need to be tai-
lored to the specifc characteristics of the neuroimaging data and the goals of the 
research or application. The practically applied GAN for enhanced neuroimaging 
will be discussed in the upcoming sections. Training a GAN involves a delicate bal-
ance where the generator learns to produce more realistic images while the discrimi-
nator becomes better at detecting fakes. This process is iterated through numerous 
cycles, with the generator trying to maximize the errors of the discriminator by pro-
ducing increasingly convincing outputs, and the discriminator learning to minimize 
its mistakes. Optimized techniques often used include backpropagation and gradient 
descent, which modify the internal parameters of both networks based on their per-
formance in every iteration. The quality of this training process is very critical, as it 
dictates how well a GAN would be able to come up with new data for application in 
real-life scenarios [19]. 

The framework of GAN theory maps particularly well onto the challenges of 
medical imaging. It speaks for itself to the core challenges in medical imaging: 
the availability of a few large, annotated medical datasets is only what is available 
to train GANs for generating high-quality synthetic images. Further, GANs may 
be trained for creating images that capture the variability of pathological features 
across different patients, which can itself be of value in training and testing diagnos-
tic algorithms. Applications of GANs in medical imaging improve both quality and 
quantity, obeying privacy regulations through the generation of de-identifed images. 
This means that the relevant pathological information is preserved in the images 
while keeping the corresponding personal data safe [20]. 

Understanding only the basics of GANs, one cannot but help relate to the fact 
that these networks are going to drastically change medical imaging, more so neuro-
imaging. This section tries to explain as much as possible in simple language while 
avoiding jargon so that technical and nontechnical readers can engage fully with how 
advanced tools work and their potential to really change medical diagnostics. It sets 
the scene for an understanding of how GANs may be put into practical applications 
to improve the accuracy and effciency of neuroimaging, explored in-depth through-
out the rest of the chapter. 

10.4 GANs IN NEUROIMAGING: ENHANCING 
DIAGNOSTIC IMAGING 

One of the most important challenges in neuroimaging is that high-quality and 
diverse datasets are not commonly available, especially considering the rare neu-
rological conditions. GANs aid in this by synthesizing quality images that could 
be used for the augmentation of existing datasets. Such creation of synthetic data is 
especially useful in training and increasing the precision of other AI-driven diag-
nostic tools, which require volumes of data for learning effectiveness. The GANs 
generate images that mirror the variability present in real patients, providing a way 
to build more robust and complete datasets to train from, making the diagnosis mod-
els more predictive [21]. 
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There are various techniques and methodologies associated with ML and AI that 
are being used in several advanced medical imaging applications in neurology and 
other relevant medical applications; it is quite a task to decide which is needed to be 
chosen for the required task. Hence, Table 10.2 compares various techniques used 
in advanced neuroimaging, alongside their applications, and their respective advan-
tages and disadvantages compared to GANs. 

TABLE 10.2 
Other AI and ML Techniques with Advantages and Disadvantages 
over GANs 

Technique 
Variational 
autoencoders 
(VAEs) 

Application in 
Neuroimaging 

Data augmentation, 
disease 
progression 
modeling 

Advantages over GANs 
The probabilistic 
approach allows for 
better data 
understanding and can 

Disadvantages Compared 
to GANs 

Often produce less sharp, 
blurrier images than 
GANs. 

model the distribution 
of input data. 

Convolutional 
neural networks 
(CNNs) 

Tumor detection, 
lesion 
segmentation, 

Highly effective for 
classifcation and 
segmentation with 

Not generative; mainly used 
for supervised tasks 
requiring extensive labeled 

anatomical stable training data. 
analysis processes. 

U-Net High-precision Specialized architecture Mainly for segmentation; it 
segmentation of provides excellent does not generate new 
complex 
structures 

segmentation accuracy, 
especially in layered 

images. 

structures like the 
brain. 

Deep belief 
networks (DBNs) 

Feature extraction, 
image 

Good at unsupervised 
learning and feature 

Generally produces 
lower-quality images; 

classifcation extraction; robust to 
overftting due to 

complex training process. 

greedy layer-wise 
training. 

Sparse Coding Image Excellent at Not inherently generative 
reconstruction, 
noise reduction, 

reconstructing 
high-quality images 

and computationally 
demanding. 

data compression from noisy data; 
enhances signal quality. 

Transfer Learning Enhancing model Can leverage existing Performance is highly 
performance with neural network dependent on the 
pretrained 
networks 

architectures trained on 
large datasets to 

relevance of the source 
model to the target task; it 

improve performance may not capture all 
and training speed. task-specifc nuances. 
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This comparison table offers a comprehensive view of the various computational 
techniques used in neuroimaging alongside GANs. 

• Applications: All of these methods have particular applications in neuro-
imaging. For example, VAE and GAN are mostly used for generating new 
images, which can become very useful during training when limited data 
are available. On the other hand, CNN and U-Net are very effcient in the 
segmentation and classifcation of images, which are very common analy-
ses within medical imaging. 

• Advantages over GANs: Techniques like VAEs offer a probabilistic under-
standing of the data, which can be advantageous in tasks where modeling 
the underlying distribution of data points is crucial, such as in simulating 
disease progression. CNNs and U-Nets provide high accuracy in segmenta-
tion, making them indispensable in clinical settings. 

• Disadvantages Compared to GANs: Despite their strengths, some of these 
techniques have limitations when compared to GANs, particularly in image 
generation. For example, VAEs tend to produce blurrier images compared 
to the often sharp outputs from GANs. Moreover, methods like CNNs and 
U-Net are not designed for generative tasks, focusing instead on analysis 
and segmentation [22]. 

Overall, the choice of technique heavily depends on the specifc requirements of the 
neuroimaging task, such as whether the priority is on generating new data, enhanc-
ing image quality, or extracting meaningful features for diagnostic purposes. GANs 
are neural networks used for generating synthetic data, particularly in advanced neu-
roimaging. They are basically made of generators (G) and discriminators (D), which 
can be used together to come up with excellent medically realistic images. Truly, this 
is learning a better representation of real data by the generator. Figure 10.2 presents a 

FIGURE 10.2 Generator and discriminator loss during training. 
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graph that shows the trend in losses for both the generator and discriminator during 
such training. Fast convergence of the discriminator’s loss may be an indicative case 
for being too strong compared to the generator, hence a clear indication of overftting. 
The generator’s loss goes down initially, then increases again, hence a hint that it is 
struggling to produce plausible examples. This will have implications for advanced 
neuroimaging; the high accuracy by the discriminator drastically limits the learning 
potential of the generator and might provide images lacking some essential details 
[23]. One such GAN is trained and used for the purpose of this study of GANs in 
advanced neuroimaging for upgrading the image resolution, and the generator and 
discriminator are trained with the pseudocode shown in the previous section with the 
losses shown in Figure 10.2. 

The graph in Figure 10.2 shows the loss curves for both the Generator (G) and 
the Discriminator (D) over a number of iterations during the training process 
of a GAN. 

1. Discriminator loss (D): The discriminator loss quickly converges to a value 
close to zero and remains relatively fat for most of the training. This sug-
gests that the discriminator quickly learns to distinguish between real and 
fake images effectively, to the point where it almost perfectly identifes fake 
images generated by the generator. 

2. Generator loss (G): The generator loss initially decreases but then starts 
increasing and stabilizes around a higher value. This increase and stabiliza-
tion indicate that the generator is struggling more to fool the discriminator 
as the training progresses. 

For applications in advanced neuroimaging, these training dynamics have specifc 
implications: 

• Rapid discriminator convergence: The fact that the discriminator loss drops 
and remains low could be a sign that the discriminator is too powerful com-
pared to the generator. In neuroimaging, where nuances in the image can be 
critical for accurate diagnosis or analysis, a discriminator that outperforms 
the generator might lead to the generator producing less realistic or overly 
smooth images, missing important details. 

• Generator performance: The pattern of the generator loss suggests that it 
has diffculty generating images that are convincing to the discriminator. 
For neuroimaging applications, this could mean that synthetic images gen-
erated by the GAN might not be of high enough quality for clinical use, lack 
necessary details, or introduce nonrealistic artifacts. 

The GAN model that is trained and the training results are shown in the graph 
in Figure 10.2. The CIFAR-10 dataset is used for training the GAN model. The 
CIFAR-10 is a public dataset similar to the MNIST dataset, widely used in ML and 
computer vision. It is formed of 60,000 color images of aggrandized 32 × 32 pixel 
resolution, delineated across ten classes, each proffering 6,000 images. The classes 
depict objects and animals like airplanes, cars, birds, cats, deer, dogs, frogs, horses, 
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TABLE 10.3 
Details of the Dataset Used to Train GAN 

Attribute Details 
Total images 60,000 

Image size 32 × 32 pixels 

Color channels 3 (RGB) 

Classes 10 

Images per class 6,000 

Training set size 50,000 images 

Test set size 10,000 images 

Usage Object recognition, computer vision, ML 

ships, and trucks. Here the total number of images is 60,000 and out of them, 50,000 
images are used for training, and the remaining 10,000 images for testing. More to 
the point, this dataset is particularly suitable for training GANs because it is suff-
ciently complex and diverse compared to the manageable number of images. It sets 
a relatively diffcult but realistic standard for training generative models. Various 
details concerning the CIFAR-10 dataset are provided in Table 10.3. 

For GAN training, as can be observed in Table 10.3, the CIFAR-10 dataset 
provides a diverse and colorful set of images that help the generative model learn 
to produce a wide range of small-scale images. Training a GAN with CIFAR-10 
involves using real images from the dataset to train the discriminator to iden-
tify real and fake images accurately, while the generator tries to produce images 
that are indistinguishable from the actual dataset images. While CIFAR-10 is 
not specifcally designed for neuroimaging and doesn’t include medical images, 
the principles learned from training GANs on CIFAR-10 can be applied to 
more specialized datasets in neuroimaging. For neuroimaging-specifc applica-
tions, researchers typically use medical imaging datasets, such as those from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), Brain Tumor Segmentation 
(BraTS) Challenge, or the Human Connectome Project. When transitioning to neu-
roimaging applications, it is crucial to train the GAN on relevant medical datas-
ets that contain MRI scans, computed tomography (CT) scans, or other medical 
images to ensure the model can generate realistic and clinically relevant synthetic 
images. The choice of the dataset will depend on the specifc application, such as 
disease modeling, anomaly detection, or image enhancement in medical contexts. 
Hence, for a practical application where GANs are being used in some real-life 
applications of advanced neuroimaging, the following are some recommendations 
for improved training of GANs: 

• Balance the networks. 
• Advanced regularization techniques. 
• More realistic training data and more variability. 
• Domain-specifc adjustments [24]. 
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Advanced neuroimaging requires a balance during training between the genera-
tor and discriminator for improved synthetic image quality, a factor that is criti-
cal in medical applications. In that respect, techniques such as network balancing, 
advanced techniques, and ftting a generator for neuroimaging data are encouraged. 
The ability to generate high-quality synthetic images that can be applied clini-
cally depends on achieving a balance in the training dynamics between the genera-
tor and discriminator. GANs have been successful in enhancing the resolution of 
images through super-resolution: reconstructing high-resolution images from their 
lower-resolution versions by learning data mappings of low to high detail. Since the 
resolutions are enhanced, clinicians and researchers will identify fne details in neu-
roimages to improve diagnosis accuracy [25]. 

First of all, it concerns the privacy of patients in healthcare since this is the num-
ber one concern of the industry, more so on the application of medical images in 
research and training. GANs make a big difference in this respect by making very 
realistic but completely synthetic neuroimaging data, which can be used without vio-
lation of privacy laws. These images do not correspond to any real patient but retain 
essential anatomical and pathological features necessary for effective training of 
diagnostic tools. This capability is thus not only useful in scaling up the development 
of neuroimaging techniques but also in adhering to strict data protection regulations. 

Complex and clinically very useful GANs in neuroimaging require a diversity of 
high-quality datasets to guarantee the robustness and generalizability of the trained 
models. Here are some of the most widely used neuroimaging datasets that one can 
use to train GANs: 

1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
• Content: MRI and PET images, genetic, cognitive, cerebrospinal, and 

other biological markers. 
• Use: Ideal for studies on Alzheimer’s disease progression and aging, 

including tasks like predicting disease progression and generating syn-
thetic images of disease stages [26]. 

2. Brain Tumor Segmentation (BraTS) Challenge datasets 
• Content: Multi-institutional preoperative MRI scans of glioblastoma and 

lower-grade glioma, with annotations for tumor and tumor subregions. 
• Use: Useful for training GANs to synthesize brain tumor images or to 

enhance tumor segmentation capabilities [27]. 
3. Human Connectome Project (HCP) 

• Content: High-resolution 3T MRI scans from healthy adult subjects, 
including structural and functional MRI data. 

• Use: Provides a baseline for normal anatomical and functional brain 
imaging, valuable for generating control images in studies or enhancing 
functional MRI analysis [28]. 

4. Open Access Series of Imaging Studies (OASIS) 
• Content: Cross-sectional MRI data from young, middle-aged, nonde-

mented, and demented older adults. 
• Use: Facilitates the study of normal aging and cognitive decline, ideal 

for GANs aimed at generating or augmenting aging brain datasets [29]. 
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5. Pediatric Imaging, Neurocognition, and Genetics (PING) dataset 
• Content: MRI data and a variety of clinical and cognitive scores from 

a pediatric population. 
• Use: Helps in generating pediatric brain images for studies focusing on 

early development and neurodevelopmental disorders [30]. 
6. UK Biobank Imaging Study 

• Content: Extensive imaging data including brain MRI, alongside rich 
genetic and health information from a large-scale cohort. 

• Use: It offers a comprehensive resource for training GANs in a diverse 
adult population, and it is ideal for broad applications in disease predic-
tion and aging [31]. 

7. LONI Probabilistic Brain Atlas (LPBA40) 
• Content: Brain atlases derived from 40 MRI volumes with segmented 

brain structures. 
• Use: Useful for tasks requiring precise anatomical segmentation and for 

generating anatomically accurate synthetic brain images [32]. 
8. Cam-CAN 

• Content: Contains MRI and other modalities from a large range of ages 
across the adult lifespan. 

• Use: Useful for understanding changes in brain structure and func-
tion across the lifespan, and for synthesizing age-varied brain 
images [33]. 

These datasets include a wide and deep range of data that would be very useful 
for GAN training applied to various neuroimaging applications. Each of the asso-
ciated datasets has various strengths, including high-resolution annotations, large 
sample sizes, diversity in populations, and inclusion of healthy/pathological subjects. 
It should, however, be appreciated that each of these datasets has an agreement to 
use and share, with accompanying ethics on the confdentiality of the patients and 
permission to make use of their data. 

GANs in neuroimaging can help alleviate some of the most pressing con-
cerns of this domain: data scarcity, image resolution, and privacy. Specifically, 
GANs synthesize high-quality images to enhance the resolution of the images 
and generate de-identified synthetic data, thereby enhancing the quantity 
and quality of the data for neuroimaging applications. The techniques are 
strongly impacting neurology and leading to more accurate and earlier 
diagnoses of neurological disorders. The next sections will introduce con-
crete applications and case studies that further realize the benefits of GANs in 
neuroimaging. 

10.5 PRACTICAL APPLICATIONS OF GANs IN NEUROLOGY 

There are several practical applications of GANs through which they can particu-
larly be considered useful in neurology and neuroimaging. Apart from a spectrum of 
applications, some of the most relevant and most developed recent applications are 
listed below for reference. However, the studies and research on its applications are 
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being conducted continuously, which makes them a continuously evolving technol-
ogy with continuous advancements. 

1. Data augmentation 
a. Addressing the scarcity of annotated neuroimaging data 
b. Techniques for synthetic data generation [34] 

2. Image reconstruction 
a. Enhancing clarity and detail in neuroimages 
b. Case studies demonstrating improved diagnostic utility [35] 

3. Automatic segmentation 
a. Techniques for segmenting complex brain images 
b. Impact on the speed and precision of diagnoses [36] 

4. Anomaly detection 
a. Identifying subtle signs of neurological disorders [37] 
b. Comparative analysis with traditional diagnostic methods [10] 

GANs have become vital in advanced neuroimaging because of the impressive 
way in which they generate and manipulate images. Their applications range from 
data augmentation to image synthesis, reconstruction of images, and the detection of 
anomalies. Table 10.4 presents some of the uses of GANs in advanced neuroimag-
ing that were developed frst, summarizing their applications, advantages, and chal-
lenges as a quick preview of the applications of GANs in advanced neuroimaging. 

Table 10.4 shows the practical applications of GANs in neuroimaging, comple-
mented by real examples of cases where those technologies have been tested or 
applied. That increases credibility and gives insight into what their potential is: 

• One study discusses how GAN-based data augmentation can be applied to 
improve the performance of ML models within medical image classifca-
tion tasks [34]. 

• Another case illustrates how, in quite a crucial setting, where one kind of 
imaging may be formally contraindicated or unavailable, GANs could take 
a key role in synthesizing medical images across modalities [35]. 

• One research project represents an example of how GANs reconstruct high-
quality images from already existing MRI data, which is quite important in 
neurology, where image clarity might critically determine diagnosis [38]. 

• An example of the usage of GANs in detecting anomalies in retinal imag-
ing is a pertinent transferable concept to neuroimaging for the identifcation 
and diagnosis of various brain anomalies [39]. 

• The study gives insight into how GANs can model disease progression − an 
area emerging to revolutionize how neurological diseases are studied and 
treated [40]. 

The area of neuroimaging is already unparalleled, in nearly all aspects, by GANs − 
tending from improved diagnostic capabilities to developing new ways of studying 
and better understanding neurological conditions. Each of these studies or applica-
tions has its challenges, most especially accuracy issues and ethics of AI-generated 
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TABLE 10.4 
Practical Applications of GANs in Advanced Neuroimaging 

Application Description Benefts Challenges Case Study Reference 
Data 
augmentation 

Generating 
synthetic 

Enhances model 
training with 

Risk of 
synthetic data 

A study used GANs to 
augment data for liver 

neuroimaging limited real data not accurately lesion classifcation in 
data to and improves representing CT images, 
augment robustness. real patient signifcantly improving 
datasets. variations. classifcation 

performance [34]. 

Image synthesis Converting Useful when Synthesized Another study in 2017 
images from certain images may demonstrated the 
one modality modalities are miss subtle synthesis of cardiac 
to another unavailable; yet critical MR images into CT 
(e.g., MRI to supports features images, aiding in 
CT). comprehensive present in multimodal studies and 

diagnostic actual scans. treatments [35]. 
evaluations. 

Image 
reconstruction 

Enhancing the 
quality of 

Produces higher 
resolution 

Requires 
careful 

Conduction of one 
research used GANs to 

images from images, corrects calibration to reconstruct high-
lower- artifacts, and avoid quality 7T-like MR 
resolution improves introducing images from 3T MR 
inputs. diagnostic artifcial images, enhancing the 

accuracy. features that image quality for better 
could mislead diagnosis [38]. 
clinicians. 

Anomaly 
detection 

Identifying and 
highlighting 

Facilitates early 
detection and 

Dependence 
on the 

One such study in 2017 
utilized GANs for 

abnormalities diagnosis of diversity and detecting retinal 
in brain tumors, lesions, quality of diseases from optical 
images. and other training data coherence tomography 

anomalies. to avoid false images, showcasing the 
positives or potential for early 
negatives. diagnostic applications 

[39]. 

Simulating 
disease 
progression 

Generating 
images that 
show the 

Aids in 
understanding 
disease 

Ethical 
concerns and 
accuracy in 

Another study simulated 
the progression of 
white matter lesions in 

progression of trajectories and predicting brain MRIs, providing 
neurological planning future disease valuable insights into 
diseases. treatment states need disease progression and 

strategies. rigorous potential therapeutic 
validation. effects [40]. 
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images, which calls for further research and development. GANs have most neuro-
logical applications, which show the potential for GANs to prove transformative in 
this feld. From data augmentation, image reconstruction, and automatic segmenta-
tion to even anomaly detection, GANs-augmented neuroimaging technologies are 
giving way to more accurate, effcient, and comprehensive diagnoses. Further inno-
vations to such technologies likely see clinical integration growing, further revolu-
tionizing diagnosis and treatment related to neurological disorders. 

10.6 ETHICAL CONSIDERATIONS AND CHALLENGES 

Employing synthetically created images in neuroimaging through GANs presents 
several ethical considerations. As accurately mentioned, there are numerous chal-
lenges in achieving high accuracy and reliability of the synthetic data, while these 
datasets may not mimic the real human pathology in certain ways and can result in 
inaccuracies of the diagnostic tools trained on such data. Also, there is an ethical 
imperative to make sure that synthetic data that are used in any research or clinical 
training does not prejudice or lead to wrong practices in case they will have unfortu-
nate consequences for the patients. Another ethical concern, as with synthetic data, 
is informed consent; since identifying details are removed, the distinction between 
patient privacy and consent is not distinct. This can indeed shield the privacy of 
patients, but it also brings up important legal concerns as to the defned medico-
legal jurisdiction of consent regarding ensuing data or data procured from the unique 
imaging of a patient. There is a concern thus being raised about whether such bias 
would be refected in the generated images and thus cause disparities in healthcare 
delivery and diagnostic accuracy between different populations that are represented 
differently in the training set for the GAN. 

Mitigating these sources of bias entails appropriate selection and favor of the 
populations from which data for GANs are drawn. Also, adjustments to the current 
AI models are required to prevent such biases as the models continue to be applied 
in varied aspects of healthcare operations. As a result, there a several steps that are 
diffcult in the validation and clinical acceptance of GAN technologies: 

1. The aspects of validation and clinical acceptance of GAN technologies are 
the main diffculties. Firstly, there is no consistent set of rules that estab-
lish how synthetic data and AI-generated results should be validated due to 
the fact that the regulations for AI in the healthcare sector are still rather 
ambiguous. The law has certain expectations from its accredited organiza-
tions, and since the nature of algorithms is dynamic and self-learning, the 
authorities may fnd it hard to accept results and call for hard evidence of 
effcacy and safety. 

2. It is also seen clinically that establishing trust in AI systems is another key 
issue. The public may have low confdence in diagnostic tools that are based 
on synthetic data, especially if they do not understand how the tools work. 
Accuracy and reliability, as evidenced by validation studies, are axiomatic 
when it comes to the use of GANs, but training and awareness of GAN 
simulations among healthcare practitioners are critical as well. 
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3. Moreover, many factors make it diffcult to integrate GAN technologies 
into current clinical workfows. They have to accommodate very diverse 
infrastructures in hardware and software in healthcare settings while 
accommodating many such fne details and exceptions − very common in 
medical practice during execution. 

Technical, regulatory, and ethical challenges with using GANs in neuroimaging are 
multidimensional. Such concerns must be raised together by developers, research-
ers, ethicists, and regulatory bodies to ensure that these powerful tools remain in 
empowered hands to serve responsibly for the betterment of patients and not to pro-
mote unethical practices or foster already existing biases. Looking ahead, bringing 
together the collaborative development of frameworks for the ethical use and valida-
tion of synthetic data and AI technologies in healthcare will be central to their suc-
cessful integration and acceptance in clinical practice. 

10.7 FUTURE DIRECTIONS 

The neuroimaging feld is still dynamic, where GANs are at the forefront of steer-
ing the industry forward. Multimodal GANs are able to combine information from 
various imaging techniques, which results in the usage of synthesized images for 
better understanding neurological disorders and making accurate diagnoses. They 
are also being used for projecting longitudinal data simulation and the development 
of neurological diseases such as AD or MS at different phases in life. Mitigation of 
defcits and the combination of GANs with other AI technologies, including CNNs 
and reinforcement learning (RL), improve diagnostics’ accuracy and time. CNNs 
get training data from GANs and then are employed for the specifc segmentation, 
analysis, and diagnosis of an image. Obviously, with the help of RL, the combina-
tions of diagnostic strategies can be made dynamic and adjusted depending on the 
results’ feedback, making treatment fexible and individualized. 

It might be useful to integrate GANs with natural language processing (NLP) 
technologies, which should bring a signifcant change in diagnostics reports gen-
eration and analysis, making them more accurate and available for clinicians. This 
could make a better link between image analysis and reaching clinical decisions as 
far as the fow of information among several medical teams is concerned. GANs will 
be applied in predictive diagnostic procedures and individualized approaches where 
simulation of individual patient outcomes for various potential treatments will be 
possible. With the increases in the development of GAN technology, GAN becomes 
work in clinical practice, which can help standardization of diagnostic procedures, 
decrease the possibility of error in diagnosing, and contribute to stabilization of the 
treatment process. This could also decrease the management load of medical profes-
sionals since most of the repetitive tasks could be automated. Based on these fnd-
ings, the prognosis for GANs in neuroimaging is positive; there has been a plethora 
of advancements in detecting, managing, and treating neurological disorders. Thus, 
the protocols of ethical behavior and legislation are crucial to prevent new develop-
ments from becoming a tool for doctors’ proft and preserving the quality of treat-
ment for all patients. 
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Despite the aforementioned context, GANs for advanced neuroimaging can be 
extended further in some other possible ways: 

1. Development of multimodal GANs: Other studies that conducted in the 
future could develop different GAN models using combined data from 
MRI, PET, and fMRI. Such an approach would prove to be more effcient 
since each imaging modality has its merits that can be harnessed for the 
betterment of neurological disorders diagnosis. 

2. Explainable GANs for neuroimaging: Further, researchers need to come 
up with virtual machine (VM) parameters to reveal details of synthesized 
images and data to clinicians, explaining how synthetic data are created and 
which aspects of patients’ images are most benefcial in diagnosing disease 
at different stages. This increase in transparency could improve the conf-
dence of clinicians in GAN-based tools when used for patient diagnosis or 
treatment. 

3. Improving GAN robustness and reliability: More work needs to be done to 
investigate GANs’ stability in terms of patient cohorts, scanners, and clini-
cal settings, making certain that GANs can hold acceptable image quality 
regardless of conditions that affect the input data or the scanners. 

4. GANs for early disease detection and prediction: Research can be made 
directed toward whether GANs are capable of detecting initial biomarkers 
or symptoms of neurological disorders, including but not limited to AD or 
Parkinson’s, which usually are not easily done by humans and can lead to 
better prevention and treatment. 

5. Optimizing GANs for low-resource settings: It is also necessary to consider 
the possibilities of developing GAN models considering the conditions of 
working with low-quality images and insuffcient amounts of material. This 
adaptation would therefore assist in spreading the gains of the advanced 
neuroimaging tools to these groups of people. 

6. Hybrid GANs with other AI techniques: Further studies can be conducted to 
investigate the integration of GANs with other AI techniques like RL so as 
to work even better in areas like anomaly detection or image segmentation 
to improve on the current models. 

7. Real-time GAN applications in neuroimaging: Studying new architectures 
of GAN to enable their use in real-time while performing imaging could 
give on-the-spot feedback to clinicians and aid in quicker decision-making 
that could possibly help better the quality of patient care. 

8. GANs for rare neurological conditions: Researchers should therefore 
employ GANs in the construction of synthetic datasets, especially in ail-
ments such as neurological diseases where data acquisition is a challenge. 
Such synthetic data could enhance the diagnostic performances of such dis-
orders and provide clinical insights into these disorders. 

9. Personalized medicine and patient-specifc modeling: This would mean 
that creating models that use actual data about a patient, like their genetic 
makeup and past diseases, is possible and valuable when it comes to design-
ing GANs. 
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10. Ethical and privacy-preserving GAN models: There is a need to design 
GANs that will be able to generate synthetic data in such a manner that 
patients’ identities will not be available to third parties, to ensure confden-
tiality while data sharing and collaboration among researchers. 

11. Benchmarking and standardization of GANs in neuroimaging: Guidelines 
and standards for assessing the quality of GAN models would go a long way 
toward creating consistent benchmarks and validation standards that are 
needed for the feld to achieve better levels of credibility in order to promote 
more cooperation as well as openness. 

12. Clinical trials and real-world testing: It is imperative to have a post-facto 
assessment to evaluate the clinical performance of GAN-based methods 
through clinical trials and real-world studies in order to generate quantif-
able benchmarks for its applicability and adoption in clinical use. 

13. GANs for longitudinal studies and disease monitoring: The creation of 
GANs that have the potential to synthesize realistic images and forecast 
alterations in the evolution of brain structures might enhance the diagnostic 
capabilities of condition evolution and the utility of treatments in follow-up 
examinations. 

When cultivating these directions, researchers are likely to make incremental 
improvements on GANs’ application to neuroimaging while also improving the 
technology and the lives of their patients. 

10.8 CONCLUSION 

GANs have brought signifcant change in neuroimaging by removing the need for 
high-quality synthetic data, making it easier to generate annotated datasets, address-
ing the need for high image resolution, and also tackling the issue of patient privacy. 
Some of the applications are data augmentation, image reconstruction, automated 
segmentation, and anomaly detection, which ensure that the diagnostic procedures 
are enhanced and research on neurological disorders. The adoption of GANs in clini-
cal practice may become one of the key factors that will change the nature of medi-
cine, offering accurate and fast diagnosis. However, integration of AI in healthcare 
cannot be successful unless there is a technological update, medical personnel are 
trained on AI, trust in AI outputs is established, and, moreover, sound ethical and 
legal structures are in place. There is a wide and open feld to expand and investigate 
the utilization of GANs in neuroimaging and other areas of science. Different felds, 
namely AI professionals, neurologists, ethicists, and policymakers should come 
together to work on GANs to the maximum capacity they possess. The investment 
in basic research and applied clinical studies shall guarantee that the discoveries 
progress in a scientifcally proper manner and respond to patient care necessities. 

All in all, GANs in neuroimaging are depicted as a future where technology and 
healthcare coalesce to produce better, more effcient, and feasible medical practice. 
The use of GANs in neurology is still in its initial phase, and its development will 
inevitably change the paradigm of instantiating and addressing neurological diseases 
to improve the patient’s quality of life across the globe. 
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11.1 INTRODUCTION 

Parkinson’s disease (PD) is a progressive neurological disorder characterized 
by a variety of motor and nonmotor symptoms that signifcantly affect the qual-
ity of life. It affects more than 10 million people worldwide, with an annual death 
rate of approximately 100,000, according to recent surveys by the World Health 
Organization (WHO) [1]. Early detection of PD is crucial for effective management 
and can signifcantly slow the progression of the disease. One of the notable motor 
symptoms includes changes in speech patterns, making acoustic analysis a valuable 
tool for early detection and monitoring of the disease [2]. The articulation of specifc 
vowels, such as “a” and “i,” often exhibits distinctive energy variations in individu-
als with PD, which can serve as reliable biomarkers. Automated analysis through 
signal processing strategies enables precise extraction and evaluation of these acous-
tic features, facilitating accurate diagnosis and monitoring. This chapter introduces 
a decision tree−based approach to classify and detect PD, offering a noninvasive, 
cost-effective method that enhances diagnostic accuracy. By focusing on the energy 
levels of sound recordings of the vowels “a” and “i,” the aim is to establish a robust 
framework for identifying PD with improved precision and effciency. 

Few methods dealing with the detection and characterization of PD are available 
in the literature. Abdullah et al. [3] used a publicly available dataset called Newhand 
containing voice recordings to detect PD by employing optimized feature selection 
and deep transfer learning techniques, focusing on acoustic features such as pitch, 
jitter, shimmer, and Mel-frequency cepstral coeffcients (MFCCs). The approach 
also used pretrained convolutional neural networks (CNNs) for feature extraction. 
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They reported an accuracy of 95%, a precision rate of 98%, and loss value of 0.12. A 
custom-built robotic platform to analyze sensorimotor integration in PD patients has 
been set up by Tamilselvam et al. [4]. They utilized a dataset comprising 60 partici-
pants and focused on features such as reaction time, movement accuracy, coordina-
tion metrics, tremor frequency, and grip force dynamics. Machine learning (ML) 
techniques, specifcally support vector machines (SVM), were used for classifcation 
and achieved an accuracy of 95%. 

Khan et al. [5] utilized the Parkinson’s Disease Data Set from the University 
of California, Irvine (UCI) Machine Learning Repository, which includes voice 
recordings and clinical data from PD patients and healthy individuals. The key fea-
tures analyzed comprise the acoustic characteristics, clinical symptoms, and patient 
history. The system employed a multilearning trick strategy, integrating CNNs and 
recurrent neural networks (RNNs) and achieved a classifcation accuracy of 96.2%. A 
weakly supervised learning approach to detect tremors has been proposed by Zhang 
et al. [6]. They used the Pa Data Set from the UCI Machine Learning Repository, 
which includes sensor data capturing tremor activity from PD patients. Key fea-
tures analyzed were tremor frequency, amplitude, and duration. The method applied 
weakly supervised learning techniques to train models with limited labeled data, 
leveraging additional unlabeled data to improve detection accuracy. They reported 
accuracy of 94.5%. 

Sabo et al. [7] examined the effectiveness of combining Zeno Instrumented 
Walkway with video-based gait analysis. They utilized gait data from adults with 
PD, collected using the Zeno Walkway, which offers precise measurements of gait 
time domain parameters such as stride length, gait speed, and variability, and was 
complemented by video recordings for visual gait analysis. They compared the two 
methods like quantitative measurements from the Walkway and qualitative observa-
tions from video by analyzing stride length, gait speed, and variability, fnding a 
strong correlation with a coeffcient of 0.89. In [8], the feasibility of detecting PD 
using phonemes recorded via smartphones in everyday settings. They utilized a 
dataset of phoneme recordings collected from PD patients and healthy controls using 
standard smartphone microphones. The frequency domain acoustic features such as 
pitch, formants, and speech rate were applied to SVM and random forests (RF) to 
classify and obtained an accuracy of 92.3%. 

Aljalal et al. [9] exploited the time-frequency domain features extracted via 
Discrete Wavelet Transform (DWT) and entropy measures such as approximate 
entropy (ApEn) and sample entropy (SampEn) from the EEG Dataset available 
from the UCI Machine Learning Repository. These features were given as input to 
SVM and RF and obtained a classifcation accuracy of 94.8%. Xu et al. [10] inves-
tigated brain network differences between PD patients and healthy controls using 
edge functional connectivity of the functional magnetic resonance imaging (fMRI). 
Features analyzed included edge functional connectivity metrics within the fre-
quency domain, where they constructed functional connectivity graphs with nodes 
representing brain regions and edges indicating connection strength. The analysis 
employed graph theory metrics such as degree centrality, betweenness centrality, 
and clustering coeffcient to characterize network properties, and statistical tests like 
permutation tests and group comparisons to identify signifcant differences. 
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Most of these studies predominantly focused on frequency-domain and time-
frequency domain features, such as pitch, formants, and tremor characteristics; 
while such features are informative, they may overlook the potential of fundamental 
time-domain metrics like the energy of specifc phonemes. This focus suggests a 
gap in exploring how time-domain features alone could enhance detection capa-
bilities. Furthermore, the literature indicates a diverse application of methodologies 
and datasets − ranging from voice recordings to gait analysis and electroencepha-
logram (EEG) signals − without a standardized approach or comparative analysis, 
which could constrain the generalizability of fndings. Additionally, statistical and 
feature separability measures, including histogram and Kolmogorov−Smirnov (KS) 
tests, are underutilized in current research. Incorporating these methods may pro-
vide more refned understandings of feature distributions and separability, thereby 
enhancing the precision of diagnostic evaluations. 

Incorporating time-domain features, specifcally the energy of vowels such as 
“a” and “i,” provides a direct measurement of acoustic signals, simplifying the 
analysis process without requiring complex transformations. These features are 
sensitive to subtle changes in speech patterns, potentially aiding in early detec-
tion of PD. Moreover, time-domain features enhance interpretability by estab-
lishing clear correlations between acoustic data and clinical symptoms, thereby 
improving the overall performance of diagnostic methodologies. Addressing 
these gaps and leveraging the merits of time-domain analysis can signifcantly 
advance the accuracy and effectiveness of PD detection frameworks. The rest 
of the chapter is structured as follows. A thorough description of the inves-
tigation, the dataset used, and the mathematical derivation of the features is 
provided in Section 11.2. Section 11.3 delves deeply into the statistical signif-
cance and separability that the characteristic offers in terms of distinguishing 
between different kinds of speech input followed by the ML strategy employed. 
Section 11.4 includes the conclusion and possible directions for further develop-
ment, followed by the references. 

11.2 METHODOLOGY 

This chapter presents a decision tree−based methodology for the classifcation 
and detection of PD, providing a noninvasive and cost-effective approach that may 
improve diagnostic accuracy. By analyzing the energy levels of acoustic record-
ings of the vowels “a” and “i,” the chapter aims to develop a robust framework that 
enhances the precision and effciency of PD identifcation. The publicly available 
dataset called Figshare [11] is used in this work. This comprises the artifcially syn-
thesized renditions of sustained vowel sounds, specifcally the vowels “a” and “i” 
produced by individuals across various demographic categories, including healthy 
individuals and those diagnosed with PD, multiple system atrophy, and progressive 
supranuclear palsy [12]. The wave pattern of a sample record of healthy and PD cases 
for the vowels “a” and “i” is shown in Figure 11.1(a) and (b). 

As shown in Figure 11.1, the waveform pattern of the sound recordings exhibits 
distinct differences between the two situations, particularly in amplitude and random 
features. 
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FIGURE 11.1 Wave pattern of sample record of vowel “a” and vowel “i” cases: (a) Vowel 
“a” normal; (b) vowel “a” PD; (c) vowel “i” normal; and (d) vowel “i” PD. (Continued) 
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FIGURE 11.1 (Continued) 
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FIGURE 11.2 Schematic of the steps involved. 

The proposed method for classifying PD cases involves a block diagram consist-
ing of six key steps, as shown in Figure 11.2. They are data acquisition, preprocess-
ing, feature extraction, feature evaluation and selection, ML, and classifcation. Data 
acquisition begins with collecting audio recordings from the publicly available data-
set Figshare, which includes recordings of the vowels “a” and “i” from both healthy 
individuals and PD patients. The preprocessing stage is crucial for preparing the raw 
audio data, where noise reduction techniques are applied to minimize background 
interference and ensure clarity. Subsequently, the audio data are normalized to a 
range between +1 and −1, reducing amplitude variations and providing a uniform 
basis for comparison and analysis. 

Feature extraction focuses on calculating the feature called energy of the acoustic 
signals. This feature is then evaluated for its signifcance in distinguishing between 
healthy and PD cases, ensuring that only the most pertinent features are selected for 
further analysis. In the ML stage, various decision tree models, including coarse, 
fne, and medium decision trees, are employed to handle complex decision-making 
by creating branches based on feature values. The fnal classifcation step involves 
using these decision tree models to categorize data into healthy or PD-affected based 
on learned patterns. The stochastic signal Xi(t) after normalization is given as [11]: 

X t( )
X tn ( ) = i (11.1) 

max Xi ( )t 

The energy of the of the stochastic signal “Xn(t)” given by [12]: 

N ˘
2 

� (11.2) �ˆ t 1= �Energy = 
N 

where N is the total number of samples. 

11.3 RESULTS AND DISCUSSIONS 

The energy of the voice record “a” and “i” of healthy as well as PD cases is statisti-
cally tested for the ability to distinguish between healthy and PD cases using the 
KS test. Histogram plots are also used to qualitatively assess feature separability. 
Matlab® is employed for all mathematical formulations, feature extraction, statistical 
evaluation, and ML processes. 

The range and numerical values of different audio data for healthy and PD cases 
are presented in Table 11.1. 

X tn˜ ( )( )
˙ 
ˇ 
ˇ 
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TABLE 11.1 
Range and Numerical Values 

Audio Data 
Vowel “A” 

Vowel “I” 

Vowel “A” 

Vowel “I” 

Parameter 
Range 

Numerical values 

Healthy 

0.00399−0.06595 

0.01433−0.11883 

0.02304 ± 0.01646 

0.05463 ± 0.03266 

PD 

0.00926−0.10269 

0.02496−0.12989 

0.03824 ± 0.02469 

0.07647 ± 0.03188 

As per the data presented in Table 11.1, the range of energy values for vowel “a” 
in healthy individuals is 0.00399 to 0.06595, while in PD patients, it ranges from 
0.00926 to 0.10269. For vowel “i,” healthy individuals show a range of 0.01433 to 
0.11883, whereas PD patients exhibit a range from 0.02496 to 0.12989. 

The absolute deviation values, which indicate the spread of energy values around 
the mean, also reveal notable differences. For vowel “a,” healthy individuals have 
an absolute deviation of 0.02304 ± 0.01646, compared to 0.03824 ± 0.02469 in 
PD patients. For vowel “i,” the absolute deviation is 0.05463 ± 0.03266 for healthy 
individuals, while it is 0.07647 ± 0.03188 for PD patients. These fndings, detailed 
in Table 11.1, emphasize the variations in both the range and absolute deviation of 
energy values between healthy and PD cases, potentially refecting the vocal changes 
associated with Parkinson’s disease. The KS test results for the audio recordings 
are detailed in Table 11.2, assessing the statistical signifcance of the differences 
between healthy and PD cases. 

Both vowels “a” and “i” have Chi-square values of 0, indicating no observed 
difference in feature distribution. However, the probability values show that nei-
ther vowel demonstrates signifcant statistical differentiation between healthy and 
PD cases. Thus, based on this analysis, neither vowel “a” nor vowel “i” appears to 
be highly effective in distinguishing between the two conditions. Despite the lack 
of signifcant differentiation for both vowels, vowel “a” shows a probability value 
closer to the signifcance threshold. Therefore, vowel “a” might be slightly better for 
potential differentiation between healthy and PD cases compared to vowel “i.” The 
histogram of the energy of both the voice records pertaining to healthy and PD cases 
is shown in Figure 11.3. 

The histograms reveal that the speech input for the vowel “i” demonstrates greater 
feature separability [13] in the feature space than the vowel “a.” The performance 

TABLE 11.2 
KS Test Values 

Type of Audio Records Chi-square Value Probability Value 
Vowel “A” 0 0.0591 

Vowel “I” 0 0.4255 
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FIGURE 11.3 The histogram of the energy of both the voice records: (a) vowel “a”; (b) 
vowel “i.” 



 

  

 

156 Computational Intelligence Algorithms 

TABLE 11.3 
Performance Metrics 

No. 
1 

2 

Record 
Vowel “A” 

Vowel “I” 

Sens. (%) 
75.00 

50.00 

Spec. (%) 
65.00 

77.78 

Acc. (%) 
70.00 

63.89 

parameters of the sound record to distinguish healthy and PD cases are presented in 
Table 11.3. 

Bit is inferred from Table 11.3 that vowel “a” demonstrates superior sensitivity 
(75.00%) compared to vowel “i” (50.00%), indicating that vowel “a” is more effec-
tive in correctly identifying PD cases. However, vowel “i” shows higher specifc-
ity (77.78%) than vowel “a” (65.00%), suggesting it is better at correctly identifying 
healthy cases. Despite vowel “a” having higher overall accuracy (70.00%) compared 
to vowel “i” (63.89%), the higher sensitivity of vowel “a” makes it more suitable for 
distinguishing PD cases. While both vowels have their strengths, vowel “a” is prefer-
able for its better sensitivity, making it more effective in identifying PD among the 
two vowels analyzed. 

11.4 PERFORMANCE OF DECISION TREES 

From the analysis done in the preceding sessions, it is evident that the energy val-
ues from the vowel “a” sound record exhibit superior performance in distinguishing 
between PD and healthy conditions compared to other sound records. Consequently, 
this feature has been selected for further analysis and used as input for various deci-
sion tree models, including fne tree, medium tree, and coarse tree [14]. Figure 11.4 
present the confusion matrices for these decision trees, illustrating the effectiveness 
of the vowel “A” energy feature in differentiating between PD and healthy conditions. 

For both fne and medium trees given in Figure 11.4(a) and (b), the confusion 
matrices show that 14 healthy samples were correctly classifed, and six were mis-
classifed as PD. For PD cases, 12 were correctly classifed, and eight were misclas-
sifed as healthy. This results in a positive predictive value (PPV) of 60% for PD 
cases and 70% for healthy cases for both fne and medium trees. For the coarse tree 
(Figure 11.4(c)), out of 20 samples of healthy cases, 14 were correctly classifed as 
healthy, and six were misclassifed as PD. For PD cases, 11 were correctly identifed, 
and nine were misclassifed as healthy. This results in a PPV of 55% for PD cases 
and 70% for healthy cases. 

Given their superior performance in distinguishing PD cases while maintaining 
consistent accuracy for healthy cases, the fne and medium trees are preferable over 
the coarse tree for this classifcation task. The performance indices of various deci-
sion trees during training and testing are presented in Table 11.4. 

Table 11.4 compares the performance of fne, medium, and coarse trees in clas-
sifying vowel “a,” focusing on validation accuracy, prediction speed, training time, 
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FIGURE 11.4 Confusion matrix of vowel “a” of various decision trees in predicting differ-
ent cases: (a) fne tree; (b) medium tree; and (c) coarse tree. (Continued) 
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FIGURE 11.4 (Continued) 

and test accuracy [15]. Both the fne and medium trees have a validation accuracy 
of 65% and a high test accuracy of 85%, with the medium tree signifcantly out-
performing the fne tree in prediction speed (640.65 observations/sec vs 152.66 
observations/sec) and having a shorter training time (14.70 sec vs 16.37 sec). The 
coarse tree, although it has the fastest in prediction speed (761.73 observations/sec) 
and with the shortest training time (14.12 sec), shows a lower validation accuracy of 
62.5% and a reduced test accuracy of 70%. This suggests that although the coarse 
tree excels in prediction speed, the fne and medium trees deliver superior overall 
accuracy. Among them, the medium tree achieves the optimal balance between 
speed and accuracy. 

TABLE 11.4 
Performance Indicators of Different Decision Trees 

Tree Accuracy Prediction Speed Training Accuracy 
(Validation) (%) (Obs/Sec) Time (Sec) (Test) (%) 

Fine 65 152.66 16.37 85 

Medium 65 640.65 14.70 85 

Coarse 62.5 761.73 14.12 70 
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11.5 CONCLUSIONS AND FUTURE SCOPE 

This chapter presented a noninvasive approach for detecting PD using ML tech-
niques, specifcally decision trees, with acoustic energy features from vowel 
sounds. The analysis indicated that energy features from vowel “a” outperformed 
those from vowel “i” in distinguishing between healthy and PD cases. The KS 
test revealed that vowel “a” exhibited better feature separability with a p-value of 
0.0591 compared to 0.4255 for vowel “i.” The separability offered by the feature to 
differentiate both cases has been also evaluated. The performance metrics showed 
that the energy of vowel “a” achieved an accuracy of 70%, sensitivity of 75%, and 
specifcity of 65% in identifying PD cases. The chapter observed that the fne 
and medium trees offer better accuracy of 85% for classifying, with the medium 
tree balancing speed and accuracy, while the coarse tree excels in speed of 761.73 
obs/sec but has lower accuracy of 70%. Future work could enhance PD detection 
by integrating advanced ML techniques, such as ensemble methods or combining 
decision trees with other algorithms like neural networks. Expanding the dataset 
to include diverse speech samples and additional biomarkers could improve model 
accuracy and robustness. Additionally, optimizing feature extraction methods and 
using cross-validation to fne-tune model parameters would be benefcial. Testing 
these models in real-world clinical settings could help refne their performance and 
applicability. 
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12.1 INTRODUCTION 

Cancer is a crucial health subject in the modern world, being the second most com-
mon reason for death globally after heart disease [1]. Brain tumors are among the 
deadliest forms of cancer due to their dangerous nature, heterogeneity, and poor 
prognosis [2]. They can vary signifcantly in shape, texture, and location, each type 
having its own characteristics [3]. Clinical data indicate that 45% of all brain tumors 
are gliomas, 15% are meningiomas, and 16% are pituitary tumors [4]. A brain tumor 
is an abnormal development of cells in or around the brain or skull, which can sig-
nifcantly impact a person’s quality of life [5]. Brain tumors occur when brain tissue 
grows uncontrollably [6], leading to increased intracranial pressure and disruption 
of normal brain function. Benign tumors do not spread cancer, while malignant 
tumors do. Malignant tumors can proliferate, damaging healthy tissues and poten-
tially spreading to other parts of the body [7]. Brain tumors are classifed into two 
main types: primary and secondary. High-grade tumors grow more quickly, whereas 
low-grade tumors grow more slowly but can eventually transform into high-grade 
tumors [8]. Secondary tumors, also known as brain metastases or metastatic cancer, 
originate from cancers in other body parts, such as the breast, colon, or lungs, and 
spread to the brain [9, 10]. 

The brain is a crucial organ that requires protection from damage and disorders 
[11]. A patient’s prognosis and treatment options can be determined based on the 
type of tumor. Doctors may choose from various approaches, including a “watch 
and wait” strategy that avoids invasive procedures [12]. Tumor grading is critical 
in medication and ongoing management [13]. However, radiologists often spend a 
signifcant amount of time analyzing images of brain tumors [14]. The ability of 
modern radiologists to detect and interpret these images depends on their expertise 
and subjective judgment [15]. Magnetic resonance imaging (MRI) is frequently used 
in neurology because it allows for a comprehensive evaluation of the brain and skull 
[16]. MRI’s capabilities for axial, coronal, and sagittal imaging provide enhanced 
assessment [17]. One of the advantages of MRI is that it does not involve radiation 
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and produces high-resolution images with excellent contrast [18]. This noninvasive 
imaging technology can detect many types of brain cancer [19]. MRI is a transpar-
ent, painless medical imaging technique that provides 2D and 3D views of human 
organs. However, detecting cancer cells from MRI images is a time-consuming, 
error-prone, and specialized assignment that heavily depends on the radiologist’s 
knowledge. 

An image may not have enough noticeable features to accurately judge the tumor’s 
shape. Consequently, it can be challenging for humans to make precise diagnoses. 
An additional concern is that an incorrect diagnosis of a brain tumor type could 
jeopardize a patient’s survival. In contrast, an accurate diagnosis allows for prompt 
initiation of treatment, signifcantly extending the patient’s life expectancy. Artifcial 
intelligence (AI) subfelds, such as deep learning (DL) and machine learning (ML), 
have revolutionized neuropathology. These techniques involve several phases: data 
preprocessing, feature extraction, feature selection, feature elimination, and clas-
sifcation. This chapter proposes an adaptive convolution neural network brain 
tumor detection (ACNN-BTD) framework. The following are the framework’s main 
contributions: 

• ACNN-BTD uses a bilateral flter to reduce noise and shrink the image, 
which is the frst step in the preprocessing stage. 

• When applied to the training dataset, data segmentation involves normal-
izing the obtained data and performing operations such as translation, rota-
tion, and scaling. 

• ACNN is used to identify the visual features. All input photos are fed 
through a network of fully connected artifcial convolutional neural net-
works (ACNNs), with the training and testing images sourced from the 
Kaggle dataset. 

• According to the results of the experiments, ACNN-BTD outperforms all 
other approaches in accuracy. 

Section 12.2 describes the rest of the manuscript, including the related study; 
Section 12.3 elaborates on the complete process of ACNN-BTD; Section 12.4 is 
based on the results and discussion; and Section 12.5 concludes the methodology. 

12.2 RELATED STUDY 

Various studies have been conducted to classify tumor cells from normal brain 
tissues using MRI scans. Research in this area has primarily focused on devel-
oping secure and effective strategies for tumor cell classifcation. The literature 
often emphasizes preprocessing techniques and the classifcation of normal versus 
abnormal brain cells. Mahesh T R et al. [20] developed gradient-weighted class 
activation mapping (Grad-CAM) imaging to highlight critical regions in the MRI 
images affecting the categorization results. The EffcientNetB0 architecture, in 
conjunction with explainable AI, approaches to make this study more accurate and 
easier to understand. The accuracy of brain tumor classifcation is improved to 
98.72%, providing precise visual information into the decision-making mechanism. 
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Muneeb A. Khan et al. [21] introduced a convolutional-block-based architecture 
for multiclass brain tumor diagnosis utilizing MRI data. By capitalizing on con-
volutional neural networks (CNNs), our suggested system effciently and robustly 
differentiates between various types of tumors. The accuracy is about 97.52%, 
highlighted by extensive assessments of three varied datasets. Javeria Amin et al. 
[22] suggested an unsupervised clustering method for tumor segmentation. In addi-
tion, a fused feature vector, a combination of features from section-based fractal 
texture analysis (SFTA), is employed. The proposal’s apparent superiority is shown 
by its encouraging detection effciency. 

Palani Thanaraj Krishnan et al. [23] developed a rotation invariant vision trans-
former (RViT) DL model for brain tumor categorization using MRI scans. RViT 
improves the precision of brain tumor detection by including rotating patch integra-
tion. The Matthews Correlation Coeffcient (MCC) was 0.972, demonstrating RViT’s 
exceptional performance. Pendela Kanchanamala et al. [24] introduced a practical 
detection approach called exponential deer hunting optimization-based Shepard con-
volutional neural network (ExpDHO-based ShCNN) to identify brain tumors. The 
classifcation accuracy is about 0.91. Mohammad Zafer Khaliki et al. [25] developed 
CNN-based EffcientNetB4, VGG19, and transfer learning techniques to identify 
several brain malignancies, including gliomas, meningiomas, and pituitary tumors. 
The prototypes were assessed using F-score, recall, imprinting, and Accuracy. The 
most impressive accuracy result was achieved by VGG16, which stood at 97%. The 
same transfer learning model also achieved 97% F-score, 97% area under the curve 
(AUC), 98% recall, and 98% precision. To quickly diagnose and cure these diseases, 
CNN architecture and transfer learning models based on CNNs are crucial to human 
health. From the preceding literature survey discussion, the accuracy of tumor clas-
sifcation varies according to different methods. The ACNN-BTD method is com-
pared in the preprocessing and classifcation stages. 

12.3 ADAPTIVE CONVOLUTION NEURAL NETWORK–BASED 
BRAIN TUMOR DETECTION (ACNN-BTD) FRAMEWORK 

An ACNN-BTD framework distinguishes between tumor cells and normal brain tis-
sues in MRI scans. The frst step is preprocessing, which involves resizing the image 
and removing noise using a bilateral flter. It undergoes normalization before apply-
ing the segmented data to the training dataset, which entails translation, rotation, 
and scaling. Using the Kaggle dataset for training and testing, the input photos are 
processed using a network of kernels, a pooling layer, and a fully connected ACNN. 
The performance evaluation in accuracy, sensitivity, and specifcity is obtained by 
the classifcation process and the preprocessing stage, as shown in Figure 12.1. 

12.3.1 PREPROCESSING 

The images are collected from the dataset; the initial stage of the framework is noise 
reduction. A bilateral flter is an image-normalizing flter that is unpredictable, pre-
serves edges, and reduces noise. It takes a mean of the intensities of surrounding 
pixels and uses that as a replacement for each pixel’s strength. A Gaussian range can 
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FIGURE 12.1 Architecture of adaptive convolution neural network–based brain tumor 
detection framework. 

be used to determine this weight. The weights depend on the physical discrepan-
cies and the average length between pixels. The fltering of noise is obtained from 
Equation (12.1). 

( ) ( )  J ax x J a h ax ) (12.1) J a = ( )gk (| J a( ) − ( ) | (l − af

v 
1 

q 
˜ 
a ˇ̂x 

Here, J ( )f ( )a  represent the noise-removed image, J denotes the actual image 
that needs to be denoised, and a represents the matching ratio of the pixel to be 
fltered. vq represents the average length between pixels ̃  and denotes the weight 
of each pixel. ax represents the Gaussian range to preserve edges. hl  denotes the 
intensity values of the pixel. The standardization of the equation is shown in 
Equation (12.2): 

whx = ˜ k J ax − ( )  l ( x − ag ( (  J a h a  ) (12.2) 
a ˙̋x 

J denotes the actual image that needs to be denoised; a represents the matching 
ratio of the pixel to be fltered. vq represents the average length between pixels ˜ 
and denotes the weight of each pixel. ax represents the Gaussian range to preserve 
edges. hl  denotes the intensity values of the pixel. The stages in preprocessing are 
shown in Figure 12.2. The bilateral flter obtains the normalization of the image. 
The fltering process is concentrated on the intensities of surrounding pixels. 
The Gaussian range is fxed around the surrounding pixel values, and the fltered 
image is obtained. 

12.3.2 SEGMENTATION 

There are a lot of approaches that work well for segmenting MRI pictures, but pick-
ing just one or two is not enough for every image. Because of its adaptability and 
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FIGURE 12.2 The stages in preprocessing. 

ability to handle the high complexity of MRI images, the suggested framework uses 
the adaptive thresholding method, as shown in Equation (12.3): 

The selection of intensity values is based on the threshold value A; the MRI 
image with the pixel values is represented as (a b, ). Depending on condition 1 0, the 
histogram and a variation of intensity values can be used to choose a threshold value 
(A). Over the whole picture h a b, ), the threshold value shouldn’t change. This step’s ( 
output identifed the precise locations of the tumor areas. The range of threshold 
values 0,1 obtains the location of tumor cells. The accurate location of tumor cells is 
shown in Figure 12.3. 

FIGURE 12.3 The precise location of tumor cells. 

h a b
if a b A

if a b A
( ) ( )

=
>

≥






,

1,  ,

0,   ( , )
 (12.3)



  

 

  

   

  

 

    

 
 

 

 
 
 

  

 

 
 
 
 
 

166 Computational Intelligence Algorithms 

12.3.3 FEATURE EXTRACTION 

Dimensional reduction analysis is used to extract features from the segmented image. 
Dimensional reduction analysis is a powerful mathematical tool for decorrelating 
massive datasets, including linked variables. It is an x-dimensional linear transfor-
mation applied to an array (x) of picture rows and columns. The feature extraction 
is obtained by regulating the image with the number of rows and columns. Note Ax 

from Equation (12.4): 

x = [ ,1 R , .. ]  (12.4) A R 2 … Rm 

The rows of the pixel matrix are represented as R, and the column represen-
tation is denoted as m. The covariance of the pixel matrix Sn is obtained from 
Equation (12.5): 

L
1

Sn = A (12.5) 
L ˜ x 

N =1 

L represents the number of rows and columns, N represents the features in the 
image, x represents the covariance of the pixel matrix. The features from the seg-
mented image are obtained from the covariance of the pixel matrix. Sn . The next 
stage of the process is classifying tumor and nontumor cells. 

12.3.4 CLASSIFICATION BY ADAPTIVE CONVOLUTION NEURAL NETWORK 

ACNN includes mathematical operation and three main components in a neural 
network: input layer, hidden layer, and output layer. The hidden layer performs 
traditional techniques like pattern recognition. A neural network is parallel com-
puting and performs computational tasks, including pattern recognition, clas-
sifcation, optimization, approximation, and data clustering. Any deep neural 
network model needs a lot of data to train and test the model and a lot of comput-
ing resources. When comparing regular neural networks, ACNN is the best for 
understanding the classifcation of an image. ACNN extracts the features and 
identifes patterns of the image dataset. The process inside the ACNN model is 
executed by the input image (32 × 32 × 3) with the conv2D with the number of 
flters and rectifed Linear Unit Relu(). To generate a down-sampled (pooled) fea-
tures chart, the max pooling procedure determines the highest result for feature-
mapped areas. Dropout is used to avoid overftting the pixel. The complete stages 
are shown in Figure 12.4. 

ACNNs use max pooling as an operation. The initial volume’s geometrical 
dimensions (width and height) are reduced using a down-sampling method. This 
lowers the processing effort and the amount of factors, which helps minimize 
overftting. The max pooling method splits the input into rectangle subregions 
that do not intersect and then returns the most signifcant amount for each 
subregion. 
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FIGURE 12.4 Stages of adaptive convolution neural network. 

The duration and flter capacity are the primary variables of max pooling. The 
stride controls the amount the flter travels along the input, while the flter size 
defnes the measurements of the zone from which the highest number is extracted. 
The maximum pooling operation (2 × 2) is shown in Figure 12.5. 

To enhance the attention mechanism, max pooling can streamline: that is, it 
simplifes the system’s concentration on key characteristics by simplifying inputs 
for the attention levels. The attention system can improve the extraction of attri-
butes by giving larger weights to signifcant elements via max pooling. The func-
tion of ACNN is shown in Figure 12.6. ACNN achieves the classifcation of tumor 
and nontumor cells. 

FIGURE 12.5 The maximum pooling operation (2 × 2). 
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FIGURE 12.6 Function fow of our proposed CNN model. 

12.4 RESULT AND DISCUSSION 

The experimental evaluation was done using Google Colab and Python. The dataset 
collection is from, including benchtop magnetic resonance imaging (BT MRI) and 
non−BT MRI images, and the dataset is mounted onto Google Drive. Our BT MRI 
image dataset contains two folders, YES and NO, containing 253 MRI images of the 
brain. The YES folder contains 155 tumorous MRI images. The NO folder contains 
98 nontumorous MRI images. The data augmentation technique operates on rota-
tion, scaling, translation, and cropping and is applied to the MRI image (Brain) to 
increase the high quality of (MRI) brain images. The normalization technique is 
used for image standardization, and the pixel scaling factor is 0-1. 
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TABLE 12.1 
The Accuracy between Sigmoid and Softmax Function 

Optimization 
RMSprop 

RMSprop 

Activation Function 
Sigmoid 

Softmax 

Splitting Ratio 
9:1 

9:1 

Accuracy 
95.59% 

99.82% 

Data splitting is in the ratio of 9:1, i.e., 90% for the training set and 10% for 
the testing set. The model is trained for ten epochs. Table 12.1 shows the accuracy 
between the sigmoid () and Softmax () activation functions using the root mean 
square (RMS) prop optimizer. The plots shown in Figure 12.7−12.10 show the loss 
and accuracy of the training and validation (testing) model. In our ACNN model, 
automatic brain tumor (BT) detection is performed very effciently, achieving an 
accuracy of 99.82%. Table 12.1 shows the accuracy between the sigmoid () and 
Softmax() activation functions used in the fully connected layer, and model optimi-
zation was done using RMSprop. The complete process for detecting and classifying 
tumor and nontumor cells is achieved by utilizing accuracy and activation functions. 
The activation function with the convolutional flters and kernel helps achieve the 
highest classifcation accuracy with the splitting ratio. 

Training is about running the dataset through the process for a predetermined 
number of epochs. The accuracy metrics are monitored to evaluate the model’s gen-
eralizability to new data. The Training Accuracy metric shows how accurately the 
algorithm matches the data used for training. When a model achieves a high train-
ing accuracy, it has successfully mastered the trends found in the training data. The 
Validation Accuracy metric shows how well the model can apply its fndings to other 

FIGURE 12.7 Accuracy by using the sigmoid activation function. 
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FIGURE 12.8 The loss by using the sigmoid activation function. 

datasets. Overftting can occur if this parameter is not closely monitored. Figure 12.7 
shows the accuracy using the sigmoid activation function. 

One way to evaluate a system’s effcacy on training data is by looking at its 
training loss. The sigmoid activation mechanism produces a probabilistic result; 
this result can then be evaluated to the actual values utilizing a loss function, 
like binary cross-entropy. Figure 12.8 shows the loss using the sigmoid activation 
function. 

FIGURE 12.9 Accuracy by using the softmax activation function. 
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FIGURE 12.10 Training loss by using the softmax activation function. 

The softmax activation function fnds extensive application in the network’s out-
put layer by training neural networks for multiclass sorting. Transferring a class 
name according to the highest likelihood is easier by converting the raw prediction 
values into changes that add up to one. Figure 12.9 shows accuracy by using the 
softmax activation function. 

For jobs involving several classes to be classifed, using the softmax activation 
function in neural networks is crucial. This function gives a probability distribu-
tion over the classifcations. In conjunction with softmax activation, the categorical 
cross-entropy loss function allows the network to learn by reducing the discrepancy 
between the actual and expected label patterns. Figure.12.10. shows the loss by the 
softmax activation function. 

Table 12.2 shows the accuracy performance comparison with the existing 
method: CNN [21], RViT [23], ExpDHO-based ShCNN [24], and CNN-based 
EffcientNetB4 [25]. 

TABLE 12.2 
Comparison of Accuracy of Existing 
Methods 

Existing Method Accuracy 
RViT 96.6% 

ExpDHO-based ShCNN 91% 

CNN-based EffcientNetB4 97% 

CNN 97.52% 

Grad-CAM 98.72% 

Proposed ACNN-BTD 99.82% 
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12.5 CONCLUSION 

Identifying brain tumors is the most challenging task for healthcare professionals 
and doctors. Hospital medical professionals require images of the tumors’ appear-
ance and location to diagnose and treat brain tumors. Automatic brain tumor seg-
mentation is a popular method for extracting this data from MRI scans. To resolve 
MRI scans of the brain and identify tumor cells, this research presents an architec-
ture called ACNN-BTD. Using a bilateral flter to reduce noise and shrink the image 
is the frst step in the preprocessing stage. When applied to the training dataset, 
data segmentation involves normalizing the obtained data and performing opera-
tions such as translation, rotation, and scaling. ACNN is used to identify the visual 
features. All input photos are fed through a network of fully connected ACNNs, 
with the training and testing images sourced from the Kaggle dataset. According 
to the results of the experiments, ACNN-BTD outperforms all other approaches in 
accuracy. 
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13 STN-DRN: Integrating 
Spatial Transformer 
Network with Deep 
Residual Network for 
Multiclass Classifcation 
of Alzheimer’s Disease 

Prabu Selvam, S. Sudharson, and 
P. N. Senthil Prakash 

13.1 INTRODUCTION 

The hallmark of Alzheimer’s disease (AD) is the progressive loss of healthy brain 
cells, which results in a persistent deterioration of memory, cognitive abilities, 
and intellectual aptitude. It is the primary cause of dementia, a condition that pro-
foundly impairs a person’s social and mental skills, disrupts everyday life, and gets 
worse with time [1]. The loss of nerve cells, the accumulation of neurofbrillary 
tangles and amyloid plaques and general brain tissue atrophy are the causes of this 
decrease, which worsens as the illness progresses [1, 2]. In 2021, the World Health 
Organization estimated that 55 million people worldwide had dementia. According 
to projections, this number will increase to 78 million by 2030 and a startling 139 
million by 2050, meaning more than a twofold increase from 2021 [3]. The like-
lihood of dementia is much increased in people over 65. Conversely, early-onset 
dementia, which can result from several underlying illnesses, affects only around 
3% of younger individuals [4]. With sophisticated imaging techniques, amyloid beta 
deposits − a protein closely associated with AD − can now be detected even without 
overt symptoms [5]. Discovering these early deposits might beneft clinical research 
and future uses, mainly if AD treatments are created. Imaging tools for AD detec-
tion are standard since they offer a noninvasive way of viewing the body’s internal 
organs. Many depend on these medical imaging technologies for diagnosing and 
treating AD [6]. To identify anomalies in the brain associated with the condition, a 
variety of neuroimaging methods are necessary, such as magnetic resonance imag-
ing (MRI), positron emission tomography (PET), functional magnetic resonance 
imaging (fMRI), and computed tomography (CT) − a cutting-edge machine learn-
ing (ML) method for AD detection that blends quantum and classical methods [7]. 
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A hybrid classical-quantum transfer learning method was employed to utilize a 
dataset of 6,400 labeled MRI scans categorized into two classes. This methodology 
enables effective preprocessing of intricate and high-dimensional data. In [8], ini-
tially a custom convolutional neural network (CNN) conducts binary classifcation 
of the subject’s scan. Then, various deep learning (DL) models, in conjunction with 
custom CNN, are employed to perform multiclass classifcation of a subject’s scan, 
assigning it to one of six stages of AD. 

Understanding and classifying AD has become increasingly vital in recent years 
as more accurate diagnostic tools and targeted therapeutic interventions are urgently 
needed. One major component of this endeavor is classifying AD subtypes, which 
has thus far proven diffcult due to the multifactorial ethology of the disease, as well 
as the heterogeneous nature of its clinical presentations. 

13.2 RELATED WORKS 

Numerous DL algorithms are available for the early diagnosis classifcations of brain 
images and to identify the evolution of AD. Suganthe et al. [9] developed a hybrid 
deep convolutional neural network by combining Inception and ResNet V2 architec-
tures and achieved an accuracy of 79.12% on the Kaggle Alzheimer’s dataset. Ban 
et al. [10] proposed a hypergraph-Laplacian regularized multitask feature learning 
algorithm for AD detection and classifcation using multimodal neuroimaging data. 
This method was divided into four submodules: data preprocessing, multimodal fea-
ture selection, hypergraph construction, and classifcation. The major drawback of 
this method is that it uses only imaging data. In contrast, demographic, neuropsycho-
logical, and genetic data are not used from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) dataset, and this study only examines binary classifcation. In con-
trast, multivariate classifcation may be more clinically relevant. 

Janghel et al. [11] employed a CNN architecture, specifcally the VGG-16 model, 
for predictive diagnosis of AD. Initially, it performs a preprocessing operation on 
the input images by converting 3D to 2D, then conducts a segmentation task. The 
performance of the VGG-16 is compared with classifers like support vector machine 
(SVM), K-nearest neighbors, and linear discriminant. Shanmugam et al. [7] used 
transfer learning with pretrained DL algorithms to classify disparate levels of AD 
based on MRI images. The deeper network structure of ResNet-18 contributed 
to improved precision in detecting the early stages of AD and cognitive impair-
ment. Among the three pretrained networks (GoogLeNet, ResNet-18, and AlexNet), 
AlexNet relatively performed the best using transfer learning. 

Tanveer et al. [12] proposed a computationally effcient DL ensemble model called 
Deep Transfer Ensemble (DTE) that achieves high accuracy on AD classifcation 
tasks on both large and small datasets. The key methodological aspects of the study 
are that DTE is an ensemble model; leveraged diversity is introduced by randomiz-
ing hyperparameters to reach different local optima; there are combined advantages 
of a random search for hyperparameter tuning and snapshot ensembles; transfer 
learning is used to reduce the computational complexity of training the ensemble 
model; and the ensemble combines predictions from multiple local optima as well 
as complementary feature views such as cerebrospinal fuid, white matter, and gray 
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matter. The main disadvantages of this method are the lack of an ideal method for 
choosing the DL mechanisms to include in the ensemble and the lack of a process to 
assign adequate weights to each standalone algorithm. 

Sorour et al. [13] implemented a CNN-long short-term memory (LSTM)-with-
augmentation algorithm for early AD detection using MRI images. This study 
included data preprocessing (resizing, labeling, normalization, and color modifca-
tion of MRI images) and the development of fve distinct DL algorithms for AD 
detection, partitioned into two divisions: DL models without data augmentation and 
DL models with data augmentation. The goal was to fnd the DL algorithm that best 
balances testing time and detection accuracy. Liu et al. [14] proposed a multimodel 
DL framework that outperforms single-model methods for both disease classifca-
tion and hippocampal segmentation. A 3D DenseNet network that identifes charac-
teristic representations from 3D patches derived from the hippocampal segmentation 
outcomes for disease diagnosis. The identifed characteristic representations from 
these two models are combined to make the fnal disease classifcation. Limitations 
in medical interpretation and characterization of the learned features fail to offer 
suffcient clinical information on brain abnormalities. 

Hussain et al. [15] proposed a 12-layer CNN model for AD detection, outper-
forming several pretrained CNN models. This CNN model achieved better preci-
sion, recall, F1-score, and receiver operating characteristic (ROC) scores than the 
pretrained models such as VGG-19, Inceptionv3, Xception, and MobileNetv2. You 
et al. [16] proposed a two-step cascade neural network utilizing electroencephalo-
gram (EEG) and gait data to classify better AD, mild cognitive impairment, and 
healthy controls faster and more accurately. The study used a two-step cascade 
neural network approach: use of the attention-based spatial temporal graph convo-
lutional networks (AST-GCNs) on gait data (skeleton sequences from Kinect) to dis-
tinguish healthy controls from patients (mild cognitive impairment [MCI] and AD) 
and employed spatial-temporal convolutional neural networks (ST-CNNs) on EEG 
data to further classify patients into MCI or AD. The key points were selected from 
the gait data to construct the input scaffolding sequences for the AST-GCN. The 
ST-CNN was used to extract temporal and spatial features directly from the input 
data without converting it to the frequency domain. 

Ebrahimi et al. [17] introduced a temporal convolutional network (TCN) to 
improve AD detection from MRI scans. This study used a ResNet-18 as the base 
model. It compared deep sequence-based algorithms, including TCNs and recurrent 
neural networks (RNNs) types like GRU, BiLSTM, and LSTM. It considered four 
main input data management methods: ROI-based, voxel-based, patch-based, and 
slice-based. This study used 2D CNNs for slice-based approaches and 3D CNNs for 
voxel-based approaches. It combined 2D CNNs with sequence-based models (RNNs 
and TCNs) to identify AD from MRI scans. The limitations of this study include loss 
of data and brain region features when using 2D CNNs on 3D MRI scans, overft-
ting risk due to the complex structure and many training parameters of 3D CNNs, 
and inability of 2D CNN + RNN/TCN approaches to perform feature extraction and 
classifcation simultaneously. 

Nanthini et al. [18] designed a multitask learning framework founded on deep 
belief neural networks (DBNNs) to diagnose AD at different stages, using techniques 
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like dropout and zero-masking to improve the model’s stability and generalization 
and incorporating clinical assessment scales to enhance classifcation accuracy. It 
employs a two-stage feature selection process involving differentially expressed 
genes/positions and an ensemble of feature selection methods to address the high-
dimensional and low-sample-size problem. The DBNN model outperforms well-
trained base classifers regarding accuracy, sensitivity, and area under the curve 
(AUC) for mild cognitive impairment and AD classifcation. Zhang et al. [19] intro-
duced an improved model called ADNet, which builds on the VGG16 algorithm 
and is designed for AD classifcation from MRI data, with numerous signifcant 
enhancements, including two auxiliary tasks, the SE module, the exponential linear 
unit (ELU) activation function, and depthwise separable convolution. 

Hazarika et al. [20] developed a novel deep neural network (DNN)-based fea-
ture extraction method by employing VGG-19 as a backbone network, incorporating 
dense-blocks to minimize gradient and information loss. The DNN model based on 
VGG-19, with modifcations like dense-block, inception-block, and min-max pool-
ing, is used to extract maximum features. The principal component analysis mecha-
nism was used as a feature selector to extract the more relevant features. The random 
forest algorithm was used at the end to identify early-stage AD and other dementia 
stages. The limitations of this study include the use of min-max concatenated pool-
ing layers, which adds complexity to the model. Different convolution kernels may 
help generate more profcient parameters. El-Assy et al. [21] proposed a new CNN-
based method for early diagnosis and classifcation of AD using MRI images, which 
achieves excellent accuracy rates for three-way, four-way, and fve-way classifcation 
tasks and has augmented capability for early AD diagnosis and improved patient 
outcomes. This model does not assimilate clinical data and only assists physicians in 
decision-making without supplanting their judgment. 

From the literature review, the research problems identifed are that existing 
methods use only imaging data and baseline data, missing out on valuable demo-
graphic, neuropsychological, genetic, and longitudinal data. Limited exploration of 
model architectures, hyperparameters, and single-instance cross-validation reduces 
robustness and causes overftting. Due to data variability, existing methods often use 
a single data modality, impacting classifcation performance. Multiview methods 
and complex CNN structures introduce risks of data loss, ambiguity, and overftting. 

13.3 PROPOSED SYSTEM 

13.3.1 DEEP RESIDUAL NEURAL NETWORK 

Figure 13.1 depicts the overall architecture of the proposed system. The residual 
neural network (ResNet) is a DL model introduced by He et al. [22] in 2015. The con-
cept of residual blocks, as shown in Figure 13.2, is developed to tackle the challenge 
of vanishing or exploding gradients. This network employs a technique called skip 
connections. These skip connections bypass specifc layers to directly connect layer 
activations to subsequent layers, forming residual blocks. These residual blocks are 
then stacked to build ResNets. This model’s underlying scheme enables the model to 
learn the residual mapping rather than having each layer independently. 
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FIGURE 13.1 Pipeline architecture of the proposed STN-DRN model. 

In Figure 13.2, the input x is frst weighted by the initial layer, followed by apply-
ing a nonlinear transformation via the ReLU function and the subsequent weighting 
by the second layer, resulting in h x( ) = f x( ) + x. This linear combination forms a 
residual learning module, and a network built from these modules is known as a 
ResNet. Unlike conventional networks, ResNet introduces “skip connections” that 
facilitate the unobstructed fow of information from one residual block to the next. 
This design effectively mitigates issues such as vanishing gradients and network 
degradation associated with overly deep architectures. 

The ReLU activation function frequently results in the permanent inactivation of 
neurons, causing these neurons to remain occupied. This issue hampers the effec-
tive utilization of computational resources, limiting the model’s capacity to extract 
image features effciently. To address the shortcomings of ReLU, the Mish activation 
function was chosen as a replacement within the model. The formula for the Mish 
activation function is shown in Equation (13.1). 

f ( )x = x tanh(ln (1 + ex )) (13.1) 

FIGURE 13.2 Workfow of skip connection. 
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TABLE 13.1 
The ResNet-101 Confguration 

Output Feature Map 
Network Layer Confguration Dimension 
conv1 Kernal: 7 × 7, channel: 64, stride 2 112 × 112 

Kernal: 3 × 3 max pool, stride 2 

° ˙ 56 × 56channel : 64 kernel :1  1Conv. Layer 2_x ×
˝ 
˝ 
˝̨ 

×ˇ 
ˇ 
ˇ̂ 

3channel : 64 kernel : 3  
channel : 256 kernel :1  

3 
1 

×
× 

° ˙ 28 × 28Conv. Layer 3_x channel : 128 kernel :1  1×˝ 
˝ 
˝
˝̨ 

× 
ˇ 
ˇ 
ˇ
ˇ̂ 

4channel : 128 kernel : 3  

channel : 512 kernel :1  

3 

1 

×
× 

° ˙ 14 × 14Conv. Layer 4_x channel : 256 kernel :1  1×˝ 
˝ 
˝
˝̨ 

× 
ˇ 
ˇ 
ˇ
ˇ̂ 

23channel : 256 kernel : 3  

channel : 1024 kernel :1  

3 

1 

×
× 

° ˙ 7 × 7Conv. Layer 5_x channel : 512 kernel :1  1×˝ 
˝ 
˝
˝̨ 

× 
ˇ 
ˇ 
ˇ
ˇ̂ 

3channel : 512 kernel : 3  

channel : 2048 kernel :1  

3 

1 

×
× 

The Mish activation function possesses a noteworthy attribute wherein its posi-
tive value can ascend without encountering saturation from capping limitations. The 
smoothness inherent in the Mish activation curve facilitates enhanced information 
assimilation within the neural network, consequently leading to improved accuracy 
and generalization [23–25]. Moreover, as the network’s depth escalates, Mish dem-
onstrates superior capability in preserving accuracy. 

The network confguration of ResNet-101 is depicted in Table 13.1. Figure 13.3 
illustrates the bottleneck residual modules at various layers within the ResNet-101 
network with the Mish activation function. In the deep ResNet-101 architecture, the 
bottleneck residual module comprises two 1 × 1 convolution and a 3 × 3 convolution 
layer. The frst and last 1 × 1 convolutions reduce and restore the dimensionality, 
respectively. This structure of the bottleneck residual module signifcantly enhances 
computational effciency and allows for a greater depth in the residual block. Adding 
Mish activation functions between the layers further enhances ResNet’s representa-
tional capacity. 

13.3.2 SPATIAL TRANSFORMER NETWORKS (STNS) 

The STN can dynamically execute spatial transformations. When signifcant spatial 
variations are present in the input data, incorporating this network into an exist-
ing convolutional network can enhance classifcation accuracy. The STN algorithm 
comprises three components: a localization network, grid generator, and sampler, as 
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FIGURE 13.3 Pipeline of bottleneck residual blocks of various layers for the ResNet-101 
network: (a) Conv. Layer 2_x; (b) Conv. Layer 3_x; (c) Conv. Layer 4_x; and (d) Conv. 
Layer 5_x. 

illustrated in Figure 13.4. Initially, the localization network processes the extracted 
features. Then, it produces the parameters for the spatial transformation operation 
using multiple hidden layers that will be operated on the feature space, thereby cre-
ating a normalization dependent on the input. Next, the computed conversion vari-
ables are utilized to generate a sampling pattern of points where the grid generator 
subsampled the feature map to generate the transformed outcome [26–28]. Finally, 
the feature map and the sampling grid are fed into the sampler, which produces the 
resultant map by sampling the lattice points. 
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FIGURE 13.4 Working mechanism of the spatial transformer network. 

W H C The localization module processes the input feature map X ˜ × × , where (W ) 
represents the width, (H ) represents the height, and (C ) denotes the number of chan-
nels. This network outputs (˜ ), and the attributes for the transformation (T̨ ) are 
utilized in conjunction with the feature map: ˜ = funLN X . The function funLN ()( )  
within the localization network can be a convolutional network or a fully connected 
network. However, it must incorporate a regression layer at the end to generate the 
conversion variables. 

In the grid generator module, the individual resultant pixel is calculated by 
employing a sampling flter centered at a specifc position within the input feature 
map to achieve warping of the input feature map, as given in Equation (13.2). 

˝ s ˇ
˝ xt ˇ ˝ xt ˇ 

x � ˜ ˜ ˜13 
� ˆj ˆ

j
� 11 12 

j
� 

t tˆ � = T G  = M y = � � y (13.2) 
ˆ yj � � ˜ ˜ ˜21 22 23 �

˜ ( )j ˜ ˆ j � ˆ j � 
˙

s
˘ ˆ � � � ˆ �˙ 1 ˘ ˙ 1 ˘ 

s swhere ( j ,  j ) denotes the initial coordinates within the input representation x y  
t tthat specify the sample points, while ( j ,  jx y ) represent the target coordinates. 

Additionally, M˜  refers to the affne transformation matrix (see Equation 13.3). 

° s 0 t ˙ 
M˘ = ˝ x ˇ (13.3) 

0 s t˝ y ˇ˛ ˆ 

The class of transformations can be more restrictive, similar to the transforma-
tions utilized in attention [29]. These allow for translation, cropping, and uniform 
scaling by adjusting the parameters tx, ty, and s. 

A sampler module uses input feature map X with a set of sampling points 
T G˛ ( )j  to generate the sampled output feature map Y  and to carry out a positional 
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normalization on the input. This sampling algorithm can be executed highly effec-
tively on a graphics processing unit (GPU) by focusing solely on the kernel support 
region for each output pixel rather than summing over all input locations. 

13.4 EXPERIMENT 

13.4.1 DATASET DETAILS 

The competence of the proposed model is validated using the Open Access Series of 
Imaging Studies (OASIS) dataset (https://www.oasis-brains.org/#data). The dataset 
used for this experiment consisted of 382 images sourced from the OASIS data-
base, and these images were categorized into four classes: Non-Dementia, Very Mild 
Dementia, Mild Dementia, and Moderate Dementia. Figures 13.5 and 13.6 show the 
OASIS benchmark dataset statistics and sample images, respectively. 

The OASIS dataset consists of 382 images in total. Among these, 167 images 
are categorized under the “No Dementia” class, indicating individuals without any 
signs of dementia. The “Very Mild Dementia” class includes 87 images represent-
ing individuals in the early stages of dementia. The “Mild Dementia” class contains 
105 images, signifying individuals at a slightly more advanced stage of dementia. 
Lastly, the “Moderate AD” class comprises 23 images depicting individuals with 
moderate AD. Various data augmentation techniques were employed to enhance the 
dataset size, such as rotation, mosaic, fipping, cropping, and the introduction of 
noise. Figure 13.7 illustrates the number of samples after performing augmentation 
techniques. These augmentation methods were crucial in mitigating the scarcity of 
training data during the development of the AD detection model. 

13.4.2 IMPLEMENTATION DETAILS 

The proposed STN-DRN model was developed utilizing the PyTorch framework. 
Experiments were conducted on an HP Windows 10 system with an i3 processor and 

FIGURE 13.5 OASIS dataset details. 

https://www.oasis-brains.org/#data


 

  

 

 

 

STN-DRN 183 

FIGURE 13.6 Illustration of sample OASIS dataset images. 

8 GB of RAM. The dataset of AD patients included individuals aged between 20 and 
88 years. The Adam optimizer was utilized, and the initial learning rate was set to 
1 × 10−2. The proposed model was trained over 100 epochs with batch size 16. For 
data distribution, 80% was allocated for training and 20% for testing. 

13.4.3 PERFORMANCE COMPARISON 

The performance comparison of various methods for AD classifcation reveals 
notable differences in accuracy, as shown in Figure 13.8. Ebrahimi et al. [17] and 

FIGURE 13.7 Number of samples after performing augmentation techniques. 
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FIGURE 13.8 Comparative analysis of the proposed model’s performance against existing 
models. 

You et al. [16] demonstrate similar accuracies at 91.0% and 91.07%, respectively. 
However, both studies have limitations, such as reliance on single-modality data, 
which may affect overall performance due to data variability. Tanveer et al. [12] 
achieved 85.27% accuracy, but the limited exploration of model architectures 
and hyperparameters likely constrained their results. Liu et al. [14] reported an 
accuracy of 88.90%, yet the single-instance cross-validation they employed may 
limit the robustness of their performance estimates. Zhang et al. [19] achieved 
an accuracy of 87.12%; however, their findings could have been affected by 
overfitting because of the intricate structure of their CNNs. On the other hand, 
with a 95.86% accuracy, the STN-DRN technique fared substantially better than 
these methods. This increased accuracy implies that STN-DRN successfully 
overcomes some drawbacks of alternative strategies, including enhanced gener-
alization skills and better handling of multimodal input. These results empha-
size the importance of robust model exploration, extensive data consumption, 
and sophisticated validation procedures to achieve incredible classification per-
formance in AD research. 

13.4.4 EXPERIMENTAL RESULTS 

The primary components of the confusion matrix are true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN). Each of these pro-
vides a distinct perspective on how the model operates. The diagonal elements 
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of the matrix indicate the TP or events that were adequately anticipated. The FP 
and FN, in comparison, are represented by the off-diagonal components as an 
example of the improperly classified class instances. This matrix clearly shows 
the model’s capacity to distinguish between different categories. The confu-
sion matrix, shown in Figure 13.9, thoroughly examines the model’s perfor-
mance in classifying objects. It is beneficial to normalize the confusion matrix 
to understand the model’s performance better, especially when classes have dif-
ferent sample sizes. Normalizing involves dividing each cell by the sum of its 
respective row, thus converting the counts into proportions. This process allows 
for a more precise comparison of prediction performance across different 
classes. 

TP are the instances where the network effectively classifies the positive 
instances. From the confusion matrix, the value 160 for “non-dementia” repre-
sents the number of cases accurately classified as “non-dementia” cases. FP are 
the instances where the network incorrectly classifies the positive instances. In 
this example, the value 1 in the first row and the second column indicates that 
one “non-dementia” case was wrongly classified as “very mild dementia.” TN 
are instances where the network effectively classifies the negative instances; 
although these values are not directly shown in the matrix, they can be inferred 

FIGURE 13.9 Confusion matrix of the proposed STN-DRN model. 
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from the total counts. FN are the instances where the network incorrectly clas-
sifies the negative instances. For example, from the confusion matrix, the value 
3 in the second row and first column indicates that three “very mild dementia” 
cases were misclassified as “non-dementia.” The normalized confusion matrix 
is visualized using a heatmap. The normalized value of 0.97 in the first row and 
first column signifies that 97% of the “non-dementia” instances were correctly 
predicted as “non-dementia.” Meanwhile, the value of 0.01 in the first row and 
the second column indicates that 1% of “non-dementia” instances were incor-
rectly predicted as “very mild dementia.” Detailed insights from the normal-
ized confusion matrix are crucial for understanding the model’s strengths and 
weaknesses, guiding improvements, and enhancing the classification model’s 
performance evaluation. 

When assessing the proposed model for a multiclass AD classifcation prob-
lem based on training and validation accuracy and training and validation loss, 
it becomes evident that accuracy improves while loss decreases, as illustrated in 
Figures 13.10 and 13.11. 

Figure 13.12 shows the sample result obtained by the STN-DRN model. 
The model’s accuracy indicates strong performance across different classes. It 
is exceptionally proficient in detecting cases such as “no dementia” and “very 
mild dementia.” Nonetheless, occasional misclassifications, particularly within 
“moderate dementia,” highlight areas for potential enhancement. This perfor-
mance summary offers valuable insights into the model’s strengths and areas 
needing improvement, which could inform adjustments to boost classification 
accuracy for all categories. 

FIGURE 13.10 Accuracy graph of the proposed STN-DRN network. 
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FIGURE 13.11 Loss graph of the proposed STN-DRN network. 

FIGURE 13.12 Sample classifcation results of the proposed STN-DRN model. 
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13.5 CONCLUSION 

This chapter proposes a DL model combining a deep residual network (ResNet) 
model with spatial transformer networks called STN-DRN. The ResNet-101 is used 
as the feature extractor, and the conventional Relu activation function is replaced 
with the innovative Mish activation function. The integration of STN enables the 
transformation of spatial information within MRI images of AD patients into an 
alternate space while preserving crucial information. The performance of the pro-
posed model is validated using the OASIS dataset, and the proposed model achieves 
a classifcation accuracy of 95.86%, outperforming most existing approaches. The 
performance and computational time of the proposed model can be improved in 
future using a transformer network. 
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14 Evaluation of Supervised 
Learning Algorithms 
in Detection of 
Neurodisorders 
A Focus on Parkinson’s 
Disease 

Chitigala Mouleeshwari, C. Kishor Kumar Reddy, 
D. Manoj Kumar Reddy, and Srinath Doss 

14.1 INTRODUCTION TO NEURODISORDERS 
AND PARKINSON’S DISEASE 

Neurodisorders are reviewed, with a specifc focus on Parkinson’s disease (PD), in 
Section 14.1. It explains the process by which neurodisorders lead to central nervous 
system diseases and how such states can generate both motor and nonmotor symp-
toms with a striking impact on multiple features of patients’ experience of illness. 
For example, Parkinson’s disease is a disorder marked by the death of neurones 
in charge with producing dopamine that controls movement and manifests itself 
through tremors and problems with balance. Early identifcation and treatment of the 
disease is underscored in this section. It also details the life impact of neurodisorders 
on patients’ and carers’ social, emotional, economic, and personal well-being. This 
section, which by necessity mainly provides basic defnitions and descriptions of the 
conditions, contains no tables or fgures. 

14.1.1 OVERVIEW OF NEURODISORDERS 

Neurological problems are those diseases that mainly infuence the main nerve sys-
tems such as the mind and spinal cord as well as the nerves in the body. They generally 
can be found in several various kinds and can trigger issues with electric motor activi-
ties and also nonmotor activities such as perception, sensory processing, as well as psy-
chological health and wellness. These problems can generally be triggered by aspects 
like genes, infections, injuries, or the body’s immune system assaults. Neurological 
problems are hard to take care of due to the fact that they have various signs plus intri-
cate reasons and can seriously infuence an individual’s life coupled with the human 
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beings around them. Appropriate medical diagnosis and therapy are necessary to aid 
those who are infuenced by these problems to live a far better life [1]. 

Neurological problems are typically those conditions that not just the individuals 
that are encountering these diseases face. These individuals’ households as well as 
their local community likewise face the consequences of these conditions. These 
problems can make easy everyday tasks like strolling, speaking, or remembering 
diffcult to do. These sorts of problems can likewise trigger cash issues since the 
individual with those ailments might be unable to manage their fnances, which can 
lead to their clinical expenses accumulating. Households as well as the caretakers 
can commonly feel stressed out as well as distressed since they need to assist the 
ailing individual. 

To take care of these successfully, we must boost understanding among individu-
als concerning these problems and aid them by doing even more research to recog-
nize the problems much better plus see to it that individuals obtain the healthy and 
balanced life they need. Neurological conditions can likewise trigger social seclu-
sion for those who are infuenced by these conditions as they might struggle with any 
kind of social task or to preserve connections. This seclusion can create some bad 
sensations such as solitude as well as anxiety impacting total wellness. Furthermore, 
there might be some preconceptions connected with these problems, resulting in 
discrimination and obstacles to accessing assistance and sources. For that reason, 
it’s crucial to advertise understanding as well as approval within culture to produce 
an extra-comprehensive setting for people dealing with neurological conditions [2]. 

14.1.2 UNDERSTANDING PARKINSON’S DISEASE: 
CAUSES, SYMPTOMS, AND DIAGNOSIS 

PD is a trouble with the mind that primarily impacts the individual’s ability to walk. 
This condition occurs some unique cells in the mind, called dopamine-producing 
nerve cells, obtain pain or pass away [3]. These cells typically make a chemical 
called dopamine which aids in managing activity. When they’re harmed, they do 
not produce enough dopamine, making it diffcult to engage in activities. Signs of 
PD conditions can differ; however, they typically begin gradually and become worse 
with time. Some usual indications consist of sensation being tight, trembling, and 
problems moving effciently. It might be hard for a person with PD to do day-to-day 
tasks like strolling or utilizing their hands. In addition, they might experience equi-
librium problems, which enhances their danger of falling. Extra indications as well 
as signs and symptoms might consist of exhaustion or anxiety, as well as modifca-
tions in speech or writing [4]. 

For the function of making a precise medical diagnosis of PD, doctors need to 
extensively examine each individual’s case history as well as signs and symptoms, 
as each individual might experience them in different ways. Enhancing lifestyle 
along with handling signs can be attained with very early medical diagnosis plus 
treatment. It can be tough to cope with PD for both the affected person as well as 
their loved ones [5]. As the ailment intensifes, members of the family as well as 
caretakers might need to provide extra assistance coupled with aid with day-to-day 
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responsibilities. As they take care of adjustments in their responsibilities plus part-
nerships and observe the challenges of their loved one, they might additionally feel 
intensely mentally stressed. To effectively understand the journey of dealing with 
PD, it is important that PD patients and their caretakers choose assistance from doc-
tors, assistance teams, and other solutions available in their area [6]. Individuals who 
have PD can still take pleasure in satisfying lives if they get the ideal assistance as 
well as therapy. 

14.2 ROLE OF MACHINE LEARNING IN HEALTHCARE 

Section 14.2 explores the use of machine learning (ML) within healthcare, from when 
ML began to become applicable and then how data-driven models are increasingly 
valuable for improving patient outcomes. It shows how ML has reshaped medical data 
analysis and is used for the disease diagnosis and prognostication as well in design-
ing treatment plans. It also covers various ML and artifcial intelligence (AI) tech-
niques such as reinforcement learning (RL) for therapy optimization, deep learning 
(DL)−based clinical image analysis, lesion detection, and tissue classifcation, and pre-
dictive analytics to personalized medicine. Table 14.1 also identifes important infec-
tion points, such as the introduction of decision trees and predictive analytics for AI 
use in medicine during two successive decades: from decision tree adoption (2000) 
to the year of predictive analytics (2020). This section also emphasizes the updated 
decision-making in image analysis and therapy made easy due to these advancements. 

14.2.1 EVOLUTION OF ML IN HEALTHCARE 

Equipment development has transformed how clinical information is examined and 
made use of to improve client end results. Its growth in the area of healthcare has 
actually been radical. Developing formulas as well as designs that can pick up infor-
mation and make forecasts or reasoning without specifc programs is referred to as 
AI, and it is a part of an expert system [7]. Huge quantities of individual information 
such as case histories, analysis photos, hereditary information, and real-time track-
ing information can be evaluated by AI formulas in the healthcare market to discover 

TABLE 14.1 
Turning Points in Artifcial Intelligence Applications in Healthcare 

Year Turning Points in Artifcial Intelligence Applications in Healthcare 
2000 Introduction of choice trees for clinical medical diagnosis 

2004 Fostering of assistance vector makers for condition category 

2010 Introduction of deep understanding in clinical imaging evaluation 

2014 Assimilation of all-natural language handling for digital health and wellness 
document evaluation 

2020 Surge of anticipating analytics for tailored medication 

2024 Application of support discovering for therapy optimization 
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patterns that might otherwise be missed [8]. This helps the physician to anticipate 
with higher precision client results, plus customize therapy routines [3]. The acces-
sibility of enormous medical care datasets and formula growth along with increased 
handling ability have all added to the incredible improvement of AI methods. Very 
early use AI in healthcare was restricted to jobs like clinical photo evaluation, which 
included educating formulas to recognize abnormalities in computed tomography 
(CT), magnetic resonance imaging (MRI), and X-ray scans [9]. With the develop-
ment of AI abilities, its use in healthcare has expanded to incorporate medicine 
exploration, remote person tracking, customized medication, anticipating analyt-
ics, and scientifc choice assistance systems. AI designs, for example, can recognize 
detailed conditions, anticipate individual readmission, and recommend individual-
ized therapy routines based upon a person’s hereditary account and case history [10]. 

Table 14.1 details the considerable growth in expert system (AI) applications in 
healthcare over the past 20 years. It starts in 2000 with the introduction of choice 
trees for professional medical diagnosis and highlights substantial occasions approx-
imately up to the year 2010 consisting of the growth of deep understanding right into 
scientifc imaging evaluation along with using assistance vector makers for ailment 
classifcation in 2004. Additional growth consists of using all-natural language han-
dling in 2014 for the research study of digital wellness documents, the introduction 
of anticipating analytics in 2020 for customized medication, and discovering in 2024 
the optimization of treatment. These substantial successes highlight exactly how AI 
is changing healthcare treatments and boosting client treatment. 

14.2.2 ML IN DISEASE DETECTION AND DIAGNOSIS 

In the area of medication, AI has expanded in relevance for the recognition as well 
as medical diagnosis of illness [11]. It requires mentor computer system formulas to 
acknowledge patterns plus irregularities that can indicate the presence of an illness 
or problem by examining substantial quantities of clinical information, consisting 
of hereditary information, analysis photos, and patient documents. Clinical imaging 
evaluation is an essential feld where medical understanding is being used to spot 
illness [12]. 

To recognize very early signs of problems like cancer cells, heart disease, and 
neurological problems, formulas can be instructed to review photos from MRIs 
and CT scans, coupled with various other imaging methods. By determining small 
irregularities that might be diffcult to discover with the human eye alone, these 
formulas can help radiologists together with various other doctors in making earlier 
and extra-exact diagnoses [9]. Aside from clinical imaging, professional informa-
tion evaluation, consisting of lab examination, important indications, and patient 
grievances, can be evaluated to help in medical diagnosis of ailments [7]. By detect-
ing risk factors, forecasting the course of diseases, and enabling better diagnostic 
choices through pattern recognition in intricate datasets, artifcial intelligence (AI) 
algorithms are essential in supporting medical professionals. AI can also be used to 
process genetic data and fnd genetic markers linked to particular illnesses or ail-
ments. This allows medical professionals to determine a patient's genetic profle and 
determine how susceptible they are to specifc diseases [13]. 
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14.3 SUPERVISED LEARNING ALGORITHMS 

Section 14.3 covers supervised learning algorithms, with an example of their use 
in medical diagnosis in general and for neurodisorders, specifcally PD. It tells how 
these algorithms learn from labeled data and help us to make predictions, cover-
ing two main types: regression and classifcation; and common algorithms. Linear 
regression, decision trees, support vector machines (SVM), and neural networks are 
explained at a high level, including their strengths, etc. The tables provided, such as 
Table 14.2, compare principal component analysis (PCA) and independent compo-
nent analysis (ICA) to convolutional neural networks (CNNs), providing pros and 
cons of each and highlighting how we extract information from very complex data 
like neuroimaging or genetic datasets using these statistical methods. It also dis-
cusses different feature selection methods such as flter, wrapper, and embedded 
techniques, which boost the effcacy of a model by reducing dimensionality. In con-
clusion, this section shows the role of supervised learning in increasing diagnostic 
accuracy for neurodisorders. 

TABLE 14.2 
Datasets Available for Parkinson’s Disease Research 

Dataset Name Source Description Usage in Research 
Parkinson’s Michael J. Fox • Parkinson’s Disease • For training and validating 
Progression Foundation (PD) longitudinal ML models for early 
Markers Initiative clinical, imaging detection and monitoring 
(PPMI) and biospecimen disease development 

data 

UCI Parkinson’s UCI Machine • Includes variable- • Improving PD 
Dataset Learning specifcation dataset classifcation using voice 

Repository on biomedical voice analysis 
measurements from 
individuals with PD 

Parkinson’s UCI Machine • Telemonitoring • For modeling and 
Telemonitoring Learning records motor and predicting symptom 
Dataset Repository non-motor trajectories and drug 

symptoms data of response (supervised 
PD patients learning) 

PhysioNet Gait and PhysioNet • Contains movement • Used to train models that 
Tremor Database data (gait, tremor) assess motor impairments 

collected from and detect PD through 
wearable sensors in motion data 
PD patients 

Parkinson Speech UCI Machine • Voice recordings of • Used for identifying vocal 
Dataset with Learning individuals with PD biomarkers and detecting 
Multiple Types of Repository to measure speech PD through supervised 
Sound Recordings impairments learning algorithms 
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14.3.1 INTRODUCTION TO SUPERVISED LEARNING 

When a formula gains from identifed data when input information is combined with 
corresponding outcome tags, it is stated to be monitored understanding. Finding out 
a mapping in between input functions as well as the target variable is the goal of 
monitored knowing, which allows the formula to make forecasts or options when 
offered with brand-new, hidden information. The training dataset for a formula in 
monitored learning is included in input−output sets or “training instances.” In order 
to reduce the variance between its expected outcomes plus the real outcomes in 
the training information, the formula customizes its parameters throughout training 
based upon the input−output pairings [11]. Typically, a fxed loss feature that deter-
mines the variance between anticipated and real results functions as the procedure’s 
instructions. 

Both key groups of formulas for monitored discovering are regression along with 
category. The target variable in category jobs is specifc, denoting that it belongs to 
a specifc course or category. Anticipating a brand-new circumstance’s course tag 
from its provided functions is the goal. Viewpoint evaluation, email spam discovery, 
and clinical medical diagnosis are a few examples of classifcation jobs. The target 
variable in regression jobs is continual, which implies it can have any kind of worth 
within a variety. Anticipating a mathematical worth for unique circumstances based 
upon their input functions is the purpose. Predicting stock prices, real estate values, 
and customer outcomes based on domain-specifc data are examples of regression 
problems [13]. 

The adaptability and intricacy of monitored discovering formulas vary from 
simple direct designs to extra-complex nonlinear versions like neural networks and 
choice trees and sustain vector equipment [7]. The sort of information being utilized 
together with the specifc job available establishes which formula is best. All points 
thought about, monitored discovering is a reliable approach for fxing a range of 
forecasts together with reasoning issues in a range of sectors, such as all-natural lan-
guage handling, fnancing, and healthcare [14]. Overseen knowing formulas can gain 
from classifed information and produce exact forecasts, bringing about technology 
as well as progression throughout different domain names. 

Since monitored discovering can make forecasts based upon previous informa-
tion, it is regularly made use of in numerous real-world applications. 

14.3.2 OVERVIEW COMMONLY USED SUPERVISED LEARNING ALGORITHMS 

Frequently made use of monitored discovering formulas incorporate a varied series 
of techniques, each with its toughness as well as viability for various kinds of jobs 
and also datasets. These formulas are vital devices in the area of AI, giving struc-
tures for training anticipating designs from classifed information as well as mak-
ing precise forecasts on unnoticeable information [13]. One extensively utilized 
monitored knowing formula is linear regression, which is used in regression jobs to 
design the connection in between input functions and continual target variables. It 
thinks a direct connection in between the input functions and the target variable and 
intends to reduce the distinction in between anticipated and real worths, making use 



 

 
 
 
 
 
 
 
 

 

 

Supervised Learning Algorithms in Detection of Neurodisorders 199 

of methods like averaging the very least squares or slope descent [9]. One more well-
liked monitored understanding method that is versatile as well as straightforward is 
choice trees. Choice trees can take care of both continual and specifc information by 
splitting the function area right into areas according to straightforward choice regu-
lations. They are particularly valuable for category jobs and are regularly utilized in 
set methods to boost forecast effciency such as random forests as well as gradient 
boosting machines [15]. 

Solid monitored understanding formulas that are regularly utilized for category 
jobs are called assistance vector equipments or SVMs. SVMs look for to deter-
mine the optimal hyperplane that increases the margin in between courses while 
splitting the information factors right into unique courses [16]. They can manage 
made complex datasets with nonlinear choice restrictions by using methods like 
the bit technique in high-dimensional domain names. One more preferred method 
for binary category jobs in which the unbiased variable has two courses is logistic 
regression Despite its name, logistic regression is a linear model that estimates the 
probability of an input belonging to a particular class using the logistic function. 
It is suitable for applications with large datasets along with clear choice limits 
because it is interpretable as well as computationally cost-effective [17]. Recent 
years have seen a surge in the appeal of neural networks, specifcally deep fnding-
out versions, because of their capability to remove detailed patterns from large 
quantities of information. 

These versions are composed of a number of layers of linked nerve cells that 
discover ordered depictions of the input information [18]. They are inspired by the 
structure of the human brain. Deep learning models have demonstrated state-of-
the-art performance in various felds, such as image recognition, natural language 
processing, and speech recognition. Watched discovering formulas commonly make 
use and cover a vast array of strategies, each matched to certain job kinds as well as 
information residential properties. While decision trees are very easy to utilize and 
comprehend, they are specifcally ft for work entailing categories. Direct regression 
is best for anticipating continual end results. When it concerns refning complicated 
information with unique course limits, SVMs are exceptional, while logistic regres-
sion functions well for binary category concerns [14]. 

14.4 DATA COLLECTION AND PREPROCESSING 

In Section 14.4, the value of data collection in neurodisorder research is highlighted 
using PD as an example. It details a number of obstacles that have arisen as the 
feld develops, including variation in presentation and progression of symptoms from 
patient to patient, an absence of defnitive genetic or other biomarkers, and problems 
detecting changes over time by traditional means. This tutorial covers key prepro-
cessing techniques including cleaning, handling missing data, scaling attributes, 
selecting features, and reducing dimensionality. This study emphasizes methods 
used in feature extraction process such as PCA, ICA, and wavelet transform along 
with a table comparing various feature extraction techniques (e.g., PCA, FFT and 
CNNs) according to their pros and cons. There is also a discussion of data collection 
problems and defnitively describes methodology for feature selection by defning 
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three categories of methods: flter, wrapper, and embedded. Table 14.2 shows datas-
ets available for PD research. 

14.4.1 IMPORTANCE OF DATA COLLECTION IN NEURODISORDER RESEARCH 

Because of how complex and multifaceted these conditions often are, understanding 
neurodisorders requires comprehensive data collection. Given the complexity of many 
chronic pain syndromes, reliable data collection is essential if we are to identify optimal 
strategies for diagnosis and treatment. Data assembled from an array of sources like 
clinical assessments, neuroimaging studies, and genetic analyses to patient-reported 
outcomes can help researchers discover these mechanisms promote the identifcation of 
risk factors and progression in different subtypes. Of the many uses of data collection 
in neurodisorder research, perhaps chief among these is to fnd patterns likely shared 
behind various disorders, along with common genetic backgrounds and traits or envi-
ronmental ties. The identifcation of causal variants across the genome in large cohorts 
offers insight into complex genetic, biological, and environmental interactions underly-
ing neurodevelopmental disorders. It helps identify biomarkers and diagnostic markers, 
which may be important in the early diagnosis of neurodisorders. Biomarkers are quan-
tifable characteristics of natural procedures or illness states and can be measured with 
a wide range of devices including imaging, blood tests as well as cognitive evaluations. 
The knowledge of valuable biomarkers permits the establishment of noninvasive assays 
for diagnosis and prognosis studies in brain disorders during early disease stages until 
keeping track on its course over time. 

Moreover, it is critical to collect data that will allow the evaluation of safety and 
effcacy in potential treatments of neurodisorders. This includes a need for comprehen-
sive data collection through both clinical trials and observational studies to ascertain 
long-term outcomes, side effects, and therapeutic effcacy of treatments such as medi-
cations, behavioral therapy, and surgical interventions. It helps to discover appropriate 
treatments and improve treatment strategies for neurodisorders patients. 

Data collection in neurodisorder research also represents an important activ-
ity to promote patient advocacy and empowerment, as supported by the literature 
on participation of patients organizations. In neurodisorders, patient-reported out-
comes (PRO) assess the impact that disorder has on functioning in daily life, includ-
ing changes to other aspects of quality of life and psychosocial well-being. Such 
data provide clinicians with pertinent pieces of information for the development 
of patient-centered care strategies and gives advocates evidence-based backing to 
ensure individuals living with neurodisorders have access to appropriate services in 
order to live healthy lives. 

14.4.2 CHALLENGES IN DATA COLLECTION FOR PD DETECTION 

Scientists as well as physicians have a variety of challenges while collecting infor-
mation for the function of identifying PD conditions that they should conquer to 
develop accurate analysis tools and therapy strategies. The variety of PD conditions’ 
signs and symptoms and development in between individuals are signifcant barriers. 
Every person experiences PD conditions in a various ways, showing varied mixes of 
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nonmotor signs and symptoms (such as state-of-mind troubles, rest disruptions, and 
cognitive problems) and also electric motor signs and symptoms (like bradykinesia, 
tightness, and shakes). This irregularity makes accumulating information harder and 
necessitates using detailed analysis procedures to accurately record the whole vari-
ety of conditions’ signs and symptoms. The lack of trusted biomarkers for medical 
diagnosis together with condition tracking is an additional problem in the informa-
tion event procedure for PD illness discovery [5]. 

PD does not have precise biomarkers that are conveniently measured or found in 
comparison to numerous other neurological problems like Alzheimer’s disease and 
numerous scleroses do. The main approaches of medical diagnosis are medical analy-
sis together with monitoring of electric motor signs and symptoms, both of which can 
be approximate and based on the training plus the experience of the medical care 
expert [2]. The PD is chronic and progressive, although longitudinal event data is often 
available, interpreting this data presents challenges due to its complexity, variability 
over time, and the subtle progression of symptoms. To track the training course of the 
condition, the effectiveness of therapy together with modifcations in signs and symp-
toms, with time, long-lasting research studies are needed. Yet maintaining patients’ 
treatment and ensuring that they participate in follow-up consultations can be hard, 
particularly as the problem advances; they might experience issues with their fex-
ibility and cognitive abilities or suffer various other health-related repercussions [14]. 
Table 14.2 provides a summary of commonly used datasets in PD research. These 
datasets are collected from the curate source, i.e., research institutions, and include 
clinical, imaging, and sensor-based data. Data in these modalities are essential for 
building ML models targeted to early diagnosis or optimization of treatment(s) and 
intervention. The datasets provide insights into diverse aspects of the disease, includ-
ing motor symptoms diagnosed by wearable sensors to voice recordings and genetic 
markers. Through these datasets, researchers fnd ways and deal with the data collec-
tion limitations to use accurate predictive models in diagnosing or managing PD. 

14.4.3 PREPROCESSING TECHNIQUES FOR NEURODISORDER DATASETS 

The data analysis in this chapter is mainly on the signal side, which are electroencepha-
logram (EEG) and electromyography (EMG) signals to fnd patterns of PD. These time-
frequency signals are then processed and analyzed using a variety of ML techniques 
including wavelet transforms, functional connectivity analysis, etc. These approaches 
are essential for early neurodisorder screening and increasing diagnosis accuracy. For 
neurodisorder datasets, preprocessing approaches are important phases in obtaining the 
information all set for evaluation along with version building. By addressing issues such 
as noise, missing values, and inconsistencies in the data, these methods look to make the 
information tidy, standard, and suitable for extra evaluation. Neurodisorder study regu-
larly utilizes a variety of preprocessing techniques consisting of: 

• Information cleaning: Data cleansing is the procedure of searching for as 
well as repairing blunders or variances in the dataset. This might require 
taking care of outliers that might misshape the research study getting rid 
of repetitive documents and also taking care of incorrect dimensions [1]. 
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• Missing out on data handling: Incomplete individual documents and 
technological troubles throughout information collection are two typical 
root causes of missing out on information, which is a common issue in neu-
rodisorder datasets. Imputation methods like mean or mean imputation or 
making use of anticipating designs to approximate missing out on worths 
based upon various other variables in the dataset are two instances of pre-
processing techniques for dealing with missing information [2, 15]. 

• Attribute scaling: This action is important to ensure that the range or 
series of each input function in the dataset coincides. These assists main-
tain some functions from towering over the evaluation due to their better 
dimension. Standardization, which ranges the information to have a mean 
of 0 as well as a common inconsistency of 1 coupled with normalization, 
which scales the information to a variety in between 0 and also 1 prevail 
scaling treatments [4]. 

• Qualities choice: This treatment includes developing which features in the 
dataset are most necessary plus valuable for predicting the favored variable. 
Consequently, the dataset’s dimensionality is lowered, and synthetic intel-
ligence versions run much better. There are three types of quality option 
approaches: flter, wrapper and embedded methods.[19]. 

• Dimensionality reduction: This approach attempts to maintain the sub-
stantial info in the dataset while minimizing the quantity of input attributes. 
This can raise the computer performance of AI formulas plus decrease the 
results of the curse of dimensionality. PCA and t-distributed stochastic 
next-door neighbor installed (t-SNE) are two prominent dimensionality 
decrease techniques [18]. 

• Information Augmentation: To improve the initial dataset information, 
enhancement strategies produce brand-new artifcial information factors. 
This can aid in resolving issues like irregular training information or 
course discrepancy, particularly in neurodisorder datasets with little exam-
ple dimensions. Strategies like turning and turning plus including sound to 
already-existing information factors are instances of information enhance-
ment methods [20]. 

14.5 FEATURE EXTRACTION AND SELECTION 

Section 14.5 will focus on feature extraction and selection techniques, which are the 
heart of this smart system to uplift detecting capacity for some kind of neurodis-
orders such as PD that we discussed in Section 14.1. This section demonstrates the 
need for feature extraction methods in complex datasets like neuroimaging, genetic, 
and clinical data. This section reviews these methods as well, focusing on a few 
commonly used ones such as voxel-based morphometry (VBM) and functional con-
nectivity analysis, which both have been employed to detect brain patterns associ-
ated with neurodisorders. It also talks about wavelet transforms for decoding brain 
waves and genetic feature extraction to detect signifcant genetic markers related to 
the disease. In this section, a table comparing feature extraction methods explaining 
PCA, ICA SVD, and CNN with their merits and demerits is presented. Then it comes 
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to the feature selection strategies (flter, wrapper, and embedded) that lead to better 
performance metrics of a model; lower overftting and higher interpretability will 
all be followed by a comparison table for these methods, focusing on accuracy and 
effciency enhancement in neurodisorder diagnosis. 

14.5.1 IMPORTANCE OF FEATURE EXTRACTION IN NEURODISORDER DETECTION 

In order to fnd neurodisorders, function removal is crucial because it can remove 
essential info or patterns from complex information resources like neuroimaging, 
hereditary, and professional information [5]. Given that neurodisorders regularly 
show a wide variety of signs combined with symptoms, it may be challenging to 
remove purposeful info straight from neglected information. Scientists can focus on 
one of the most signifcant components of the information for accurate neurodisorder 
recognition as well as medical diagnosis by utilizing function removal methods that 
help in drawing out signifcant details from high-dimensional datasets [8]. The het-
erogeneity of neuroimaging information is a signifcant aspect adding to the impor-
tance of function removal in the medical diagnosis of neurodisorders. Neuroimaging 
techniques, consisting of functional MRI (fMRI), positron emission tomography 
(PET), and MRI, create huge quantities of elaborate information that illustrate the 
framework, features, and links of the mind. By drawing out relevant functions from 
neuroimaging information, function removal methods consisting of VBM, surface-
based evaluation, and practical connection evaluation allow scientists to determine 
mind locations or connection patterns connected with certain neurodisorders [15]. 
Additionally, the combination of multimodal information resources regularly made 
use of in neurodisorder research study relies upon function removal. Incorporating 
information from numerous information modalities such as hereditary, professional, 
and neuroimaging can boost analysis accuracy as well as provide a detailed under-
standing of neurodisorders [10]. Neurodisorder discovery designs can be made much 
more delicate as well as certain using function removal strategies like information 
blend together with multimodal assimilation, which help in the recognition of cross-
modal connections and also the removal of complementary info from a range of 
information resources. 

14.5.2 COMMONLY USED FEATURE EXTRACTION METHODS 

Often utilized attribute removal methods are vital for drawing out essential details 
from unrefned information to sustain modeling as well as evaluation in a range 
of domain names consisting of the identifcation of neurological conditions. These 
strategies aid in decreasing the intricacy of the information while preserving its most 
useful aspects, permitting researchers to focus on the attributes that are crucial for 
accurate recognition as well as medical diagnosis. Many function removal strategies 
are frequently utilized in research studies on neurodisorders: 

• VBM: This neuroimaging approach checks out exactly how the morphol-
ogy of the mind differs throughout details teams. To divide mind cells 
as well as action voxel-wise variants in gray issue, white issue as well as 
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cerebrospinal liquid quantities, architectural MRI information need to be 
preprocessed. Regional variants in the mind framework connected to neu-
rodisorders, such as several scleroses, PD, and also Alzheimer’s disease can 
be located utilizing VBM [7]. 

• Functional connectivity analysis: Based on fMRI or EEG information, 
practical connection evaluation quantifies the temporal relationships 
in between different mind locations and clarifies the characteristics 
as well as organization of the mind network. Scientists can locate 
adjustments in mind link patterns connected to neurodisorders and 
also neurodevelopmental troubles by removing aspects from practical 
connection matrices such as connection toughness or network metrics 
[5, 18]. 

• Wavelet transform: This signal-handling technique evaluates signals that 
have homes connected to both time and regularity. Wavelet change is made 
use of in neurodisorder research study to remove time-frequency functions 
that stand for vibrant modifcations in mind tasks throughout different 
regularity bands from neuroimaging or EEG information. Wavelet-based 
functions have the prospective to locate biomarkers for problems like atten-
tion-defcit/hyperactivity disorder (ADHD), PD, and epilepsy by character-
izing irregularities in mind oscillations [19]. 

• Hereditary feature extraction: To locate hereditary pens connected to 
neurodisorders, hereditary information such as solitary nucleotide poly-
morphisms (SNPs) or genetics expression accounts are assessed. Shared 
expression quantitative characteristic trait loci (eQTl) evaluation and 
genome-wide association study (GWAS) are two attribute removal methods 
that serve in determining hereditary variants or genetics expression pat-
terns connected with therapy reaction, ailment development, and suscep-
tibility [2]. 

• Medical feature extraction: To explain illness phenotypes as well as pro-
jection condition end results, professional function removal requires acquir-
ing relevant functions from professional evaluations, person documents, or 
sympathy questionnaires. These sources can have information on demo-
graphics, health and wellness background, signs and symptom seriousness 
scores, or examinations of cognitive features. Medically considerable bio-
markers and anticipating variables for neurodisorders such autism range 
condition, mental illness, and Alzheimer’s disease can be located utilizing 
professional feature removal methods [4, 6]. 

14.5.3 FEATURE SELECTION TECHNIQUES FOR IMPROVING MODEL PERFORMANCE 

By getting rid of overftting, enhancing the interpretability of anticipating 
designs, and removing one of the most useful functions from high-dimensional 
datasets, function choice strategies are vital for increasing design effciency. By 
focusing on one of the most relevant functions along with getting rid of unneeded 
or redundant ones, these approaches aid in improving the modeling proce-
dure and creating anticipating designs that are much more exact and effective. 
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A range of feature selection methods are routinely used to boost style perfor-
mance, including: 

• Filter methods: Filter approaches assess the value of specifc functions 
based upon analytical metrics such as connection, shared details, and 
Chi-square evaluations. Functions are rated or racked up based upon their 
organization with the target variable, and a part of top-ranked functions is 
picked for version training [8]. 

• Covering methods: Utilizing a range of detail combinations to cheer 
up and keep an eye on estimates, covering strategies analyze premium 
variables. Methods consist of onward options, backward removal, and 
recursive feature elimination (RFE), which are utilized to pick or get 
rid of characteristics relying on their effect on variation effciency. They 
can be computationally costly, especially when managing huge datasets 
that cover strategies that thoroughly take into consideration particular 
interactions [11]. 

• Installed strategies: Using function choice in the version training proce-
dure, ingrained methods make it possible for the version to pick one of the 
most relevant functions by itself while being educated. Version intricacy 
is penalized by approaches like Lasso regression, choice tree cutting, and 
regularization-based strategies, which prefer less complex designs with 
fewer features. Large-scale datasets can take advantage of the reliable func-
tion choice as well as version effciency optimization given by ingrained 
methods [2]. 

• Dimensional reduction techniques: Transform the original feature space 
into a lower-dimensional subspace while preserving the most important 
information. Methods such as Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA) reduce the number of features by 
capturing the underlying structure of the data. These techniques help to 
mitigate the effects of high dimensionality and improve the generalization 
performance of machine learning models [15]. 

• Set methods: To raise the precision as well as strength of forecasts, set 
methods mix a number of function choice methods or versions. They dis-
cover one of the most signifcant functions as well as lower overftting tech-
niques consisting of arbitrary woodlands slope improving equipment, and 
design piling beneft from the selection of function choice and modeling 
strategies [10, 14]. 

Table 14.3 describes feature selection techniques in ML flter methods score 
features according to statistical metrics. These techniques are typically very fast 
compared to other methods but ignore feature interactions. Similar to these wrap-
per methods, forward selection or RFE evaluates feature subsets with training the 
model. Each time, a new subset of features is selected and the model is trained on it 
to assess performance. Embedded methods resolve the issue of feature selection by 
adding a model for predicting internally, which performs the function of computing 
accuracy and effciency, and they are not generalizable. 
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TABLE 14.3 
Comparison of Feature Selection Methods 

Feature Selection 
Method 
Filter methods 

Description 
Selects features based on 
statistical properties like 
correlation with the target 
variable (e.g., Pearson 
correlation, Chi-square test) 

• 

Advantages 
Simple, fast, and 
scalable. 
Independent of 
learning algorithms. 

• 

Disadvantages 
Ignores feature 
interactions, may 
lead to suboptimal 
subsets 

Wrapper methods Evaluates feature subsets by 
training a model (e.g., 
forward selection, 
backward elimination, 
recursive feature 

• Considers feature 
interactions and 
generally provides 
better results than 
flter methods. 

• Computationally 
expensive, 
especially with 
large datasets 

elimination) 

Embedded 
methods 

Incorporates feature 
selection into the model 
training process (e.g., lasso, 
ridge regression, decision 
tree) 

• Effcient since 
feature selection is 
part of the model’s 
learning. Works well 
with complex data 

• Model-specifc, 
requires careful 
tuning of 
parameters 

structures. 

Hybrid methods Combines flter and wrapper 
methods to balance 
effciency and accuracy 
(e.g., using flter methods to 
reduce the feature space 
followed by wrappers) 

• Provides a trade-off 
between 
computational 
effciency and 
accuracy. 

• May still be 
computationally 
intensive for large 
datasets 

Dimensionality 
reduction 
methods 

Techniques like PCA and 
LDA that reduce feature 
space while maintaining 
data variance 

• Reduces 
computational 
complexity and 
minimizes 
overftting. 

• May lose 
interpretability and 
crucial features 
when reducing 
dimensions 

Hybrid methods are combined versions of flters and wrappers with the aim of 
achieving performance without sacrifcing computational complexity. Dimensionality 
reduction techniques such as PCA and LDA are also used to reduce the features 
dimension to prevent overftting, decrease computational cost, and introduce a loss 
of interpretability or relevant information. 

14.6 APPLICATION OF SUPERVISED LEARNING 
ALGORITHMS IN PD DETECTION 

Section 14.6 describes the impacts regarding the unsupervised learning approach in 
detecting PD. It talks about several studies that have effectively used SVMs, artifcial 
neural networks (ANNs), and random forest algorithms to analyze neuroimaging 
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data, genetic-level information, clinical assessments, etc. These models are evalu-
ated using key performance metrics such as accuracy, precision, recall, and F1 score. 
Table 14.3 shows a detailed comparison of the accuracy of all fve algorithms. The 
neural network reaches frst place and gets 96%. It is important to consider wearable 
sensors as a real-time monitoring tool, which uses algorithms (such as CNNs and 
recurrent neural networks) in predicting disease progression. Improved data man-
agement practices are identifed, and recommendations are made for future direc-
tions, including multimodal integration of data types (e.g., radiopathomics) and 
personalized treatment regimens. The increase in research accuracy over the past 
decade is shown by a single diagram. 

14.6.1 OVERVIEW OF STUDIES USING SUPERVISED LEARNING 

FOR PARKINSON’S DISEASE DETECTION’ 

The recognition of PD has profted considerably from the extensive use of monitored 
understanding formulas, which offer possible courses for exact medical diagnosis 
and prompt treatment and customized therapy strategies. In order to produce forecast 
versions for the medical diagnosis of PD, scientists have used monitored discovering 
techniques to evaluate a range of information resources, such as wearable sensing 
unit information, hereditary pens, neuroimaging, and professional examinations [3]. 
SVMs, artifcial neural networks (ANNs), and arbitrary woodlands are instances of 
monitored understanding strategies that have remained in neuroimaging research 
studies to assess information from diffusion tensor imaging (DTI), PET imaging, 
and architectural as well as useful MRI pictures. These examinations have exposed 
mind link patterns along with neuroimaging biomarkers connected to PD, preparing 
the development of very delicate and precise analysis versions. Monitored discover-
ing formulas have been used in hereditary research studies to analyze hereditary 
variants, gene expression accounts, and epigenetic changes connected to the threat 
and development of PD. 

Hereditary danger ratings and customized therapy strategies have been imple-
mented by the recognition of hereditary pens and paths connected to the patho-
physiology of PD with the use of strategies like logistic regression, choice trees, and 
slope increasing. To develop analysis versions for PD, medical research studies have 
assessed medical evaluations, signs, and sets of questions as well as patient-reported 
outcomes making use of monitored understanding formulas. Scientifc data has been 
integrated with neuroimaging and genetic markers, using AI approaches such as 
ensemble methods, logistic regression, and support vector machines (SVMs). This 
has enhanced analysis precision as well as prognostic abilities. Research studies uti-
lizing wearable sensing unit information have evaluated motion patterns, gait attri-
butes, and shaking intensity utilizing monitored knowing formulas. These gadgets 
consist of accelerometers as well as gyroscopes. Designs for the real-time surveil-
lance of PD signs and electric motor changes have been created utilizing strategies 
like hidden Markov models (HMMs), semantic networks (CNNs), and reoccurring 
neural networks (RNNs). This enables the very early discovery of condition develop-
ment and the optimization of therapy [20]. 
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14.6.2 PERFORMANCE EVALUATION METRICS 

Metrics for effciency examination are important tools for examining the effectiveness 
and accuracy of anticipating designs in a variety of areas consisting of all-natural lan-
guage handling, fnancing, and medical care. Using these metrics, which use measur-
able evaluations of design effciency, scientists and healthcare professionals are much 
better able to assess different versions, optimize version specifcations, and select and 
carry out designs with understanding. The forecasted performance of AI designs is 
typically analyzed using a range of effciency evaluation treatments containing: 

• Precision: The part of properly anticipated circumstances in the infor-
mation collection is gauged by precision. It is established by splitting the 
overall range of forecasts the variation makes by the variety of accurate 
forecasts. Although precision provides straightforward as well as insightful 
data, unbalanced datasets with unevenly dispersed courses might not be 
exceptionally suitable for it. 

• Accuracy: Out of all the favorable forecasts the design makes, precision 
suggests the percent of genuinely favorable projections. The proportion of 
real positives to the number of real positives plus false positives is made use 
of to calculate accuracy. Accuracy is particularly useful in applications like 
fraudulence discovery and clinical medical diagnosis, where it is crucial to 
decrease incorrect positives [8]. 

• Keep in mind (level of sensitivity): Also called genuine benefcial cost or 
level of sensitivity, keep in mind shares the percent of genuine favorable 
forecasts among all real favorable circumstances in the details collection. 
The proportion of real positives to the number of incorrect negatives plus 
real positives is made use of to compute it. For applications like condi-
tion testing and irregularity discovery, discovering every favorable circum-
stance that is important to remember is crucial. 

• F1 score: This well-balanced sign of a version’s effciency in regard to both 
accuracy and recall is determined as the harmonic mean of precision and 
recall. It is calculated as the accuracy and recall heavy standard with big-
ger worths representing remarkable design effciency. When accuracy and 
recall demand to be changed in established out-of-balance information, the 
F1 rating can be useful [1]. 

• Certain: Out of all real unfavorable situations in the information collec-
tion, specifcity quantifes the portion of real unfavorable forecasts. The 
proportion of real downsides to the number of real downsides and false 
positives is made use of to compute it. 

• The area under the receiver operating characteristic (AUC-ROC) 
curve: Information has a look at a binary team variation’s effciency over 
a selection of restriction worths. The authentic favorable price versus the 
incorrect favorable price at different limit degrees reveals the location 
under the receiver running quality (ROC) shape. AUC-ROC worths near 
1 recommend ideal team effciency with greater worths mirroring the ver-
sion’s capacity to compare [21]. 
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Table 14.4 offers an extensive introduction of numerous effciency metrics typi-
cally used in assessing monitored knowing formulas. These metrics supply under-
standings right into the performance as well as precision of anticipating versions 
throughout various domain names. Precision, accuracy, recall, uniqueness, and 
the F1 score supply procedures of the version’s category effciency, stabilizing real 

TABLE 14.4 
Performance Evaluation Metrics for Supervised Learning Models 

Metric 
Accuracy [3] 

Description 
Percentage of 
appropriately classifed 
circumstances out of 

Precision [12] 

complete circumstances. 

Percentage of real favorable 
forecasts from overall 
favorable forecasts. 

Recall (sensitivity) 
[7] 

Percentage of real 
favorable forecasts from 
real favorable 
circumstances. 

Specifcity [19] Percentage of real 
unfavorable forecasts 
from real unfavorable 
circumstances. 

F1 score [2] Harmonic mean of 
accuracy plus recall.

AUC- ROC [18] AUC-ROC contour 
determines the design’s 
capability to differentiate 
in between unfavorable 
as well as favorable 
courses. 

Mean absolute 
error (MAE) [14] 

Average of the outright 
distinctions between 
forecast and real values. 

Mean squared 
error (MSE) [10] 

Average of the squared 
distinctions between 
forecast and real values. 

Root mean squared 
error (RMSE) [5] 

Square origin of the MSE. 

Formula 

TP + TN 

TP + TN + FP + FN 

TP 

TP + FP 

TP 

TP + FN 

TN 

TN + FP 

Precision × Recall
2 × 

Precision + Recall 

AUC = 
P(Event>=Non−Event) 

n˜ yi − xii=1 

n 

1 ˛i
n 
=1 ( yi − ŷi )2 

n 

1 2 
n 
i=1 i i˛ ( y − ŷ )

n 

Interpretation 
Greater precision 
suggests much 
better general 
effciency. 

High accuracy shows 
reduced false 
favorable price. 

High recall suggests 
reduced false 
unfavorable price. 

High uniqueness 
shows reduced false 
favorable price. 

Stabilizes precision 
and recall; helpful 
for imbalanced 
datasets. 

Higher AUC 
suggests far better 
discrimination 
capacity. 

Degree of the love 
size of mistakes 
between forecast 
and real worths, 
regardless of 
instructions. 

Penalizes bigger 
mistakes much 
more than MAE. 

Provides an 
interpretable system 
for a mistake. 
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favorable and also incorrect positive/negative prices. The AUC-ROC measures 
the design’s capability to differentiate in between favorable as well as unfavorable 
courses, while mean absolute error (MAE), mean squared error (MSE), and root 
mean squared error (RMSE) review the size of mistakes in between forecast and 
real worths, offering crucial details regarding the version’s anticipating precision. 
Recognizing and analyzing these metrics are important for examining the effciency 
and dependability of AI versions in different applications. 

14.6.3 CASE STUDIES AND RESEARCH FINDINGS 

Research fndings and studies provide valuable insights into the use and effective-
ness of supervised learning algorithms across various felds, including marketing, 
fnance, healthcare, and more. In these research studies, real-world datasets are typi-
cally based on monitored discovering techniques to fx specifc issues or complete 
specifc objectives [3]. For example, in the area of medication, researchers might uti-
lize monitored understanding formulas to develop anticipating designs for diagnosis, 
treatment action, or health problem medical diagnosis. In this area of study, personal 
data such as hereditary details, case histories, and analysis imaging results might 
be evaluated to produce accurate versions for the very early discovery of illnesses 
like diabetes mellitus, cancer cells, or Alzheimer’s disease. The outcomes of these 
research studies can aid with tailored medication techniques and improve individual 
end results and overview of professional decision-making. 

Table 14.5 details the effciency of different AI formulas in identifying PD. 
Arbitrary Woodland accomplished 91% precision with well-balanced accuracy 
recall together with the F1 score. Assistance vector machines showed greater pre-
cision at 93% but with reduced performance. Logistic regression revealed 81% 
precision with high performance. Neural networks overshadowed other formulas 
with 96% precision and well-balanced accuracy recall along with the F1 score. 
Choice trees accomplished 87% precision with modest performance. These out-
comes highlight the effciency of AI in PD discovery with variants in effciency 
throughout formulas. 

TABLE 14.5 
Comparison of Different Algorithms in Terms of Accuracy and Effciency 

Algorithm Accuracy (%) Effciency Precision (%) Recall (%) F1 Score (%) 
Random forest [1] 91 Medium 89 90 89 

Support vector 93 Low 92 91 91 
machines [17] 

Logistic regression 81 High 80 82 81 
[22] 

Neural networks 96 High 94 95 94 
[23] 

Decision trees [21] 87 Medium 85 86 85 
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14.7 CHALLENGES AND FUTURE DIRECTIONS 

This section focuses on the problems and future work when supervised learning 
algorithms utilized to detect PD are introduced. Examples of these key challenges 
are the heterogeneity in symptoms, availability of data, and interpretability problems 
that consequently decrease diagnostic model accuracy. Future trends (multimodal 
data integration, personalized medicine, real-time monitoring, explainable AI, and 
big data analytics) have been summarized here to highlight how the feld will further 
progress with PD detection. In Table 14.4, we see a summary of the best performing 
ML models like random forests and SVMs, but none of these beats neural networks, 
which are at the top with an accuracy rate of 96% as shown in Figure 14.1. 

14.7.1 CHALLENGES IN APPLYING SUPERVISED LEARNING 

TO PARKINSON’S DISEASE DETECTION’ 

To produce accurate as well as credible analysis tools, scientists and doctors need to 
conquer a variety of barriers when making use of monitored discovery to the medi-
cal diagnosis of PD. The variant in PD signs and symptoms as well as development 
in between individuals is a signifcant barrier. Every person experiences PD in a 
unique way, showing varied mixes of electric motor and nonmotor signs along with 
variable consequences of condition growth. The selection of tools requires custom-
ized therapies that take private distinctions in signs and symptoms and the ailment 
training course into factor to consider making complex the development of standard 
analysis versions. The accessibility and quality of information for design examina-
tion and training face one more problem: the number of datasets associated with PD 
might be restricted, especially if they consist of longitudinal or multimodal infor-
mation resources. Issues with the quality of  information such as sound, disparities, 
and missing out on worths could infuence the generalizability and effciency of the 
design [8]. 

FIGURE 14.1 Trends in Parkinson’s disease detection using supervised learning. 
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Solid information collection treatments, participating in information-sharing pro-
grams, and  advanced data preprocessing techniques are required to attend to these 
problems and ensure the credibility as well as dependability of forecast designs. 
Additionally, word interpretation and openness of anticipating designs are vital ele-
ments to think about while detecting PD. Deep semantic networks plus various other 
complicated AI designs might not be interpretable, which makes it challenging to 
understand the basic attributes that underlie the design’s forecasts. Recognizing the 
condition, validating design forecasts, and leading restorative choice production 
all rely on interpretable designs. Research study on PD discovery is still dealing 
with considerable problems, among which is producing interpretable versions while 
maintaining great anticipating effciency. 

14.7.2 FUTURE TRENDS AND OPPORTUNITIES FOR RESEARCH AND DEVELOPMENT 

Future fads coupled with possibilities for research as well as growth in monitored 
discovery for PD are positioned to drive substantial improvements in medical diag-
nosis, therapy, and individual treatment. Many essential trends and possibilities are 
most likely to form the area in the coming years: 

• Multimodal data integration: Integrating information from numerous 
resources consisting of neuroimaging, hereditary pens, professional analy-
ses, and wearable sensing unit information provides an extensive view of 
PD pathology as well as development [1]. Future study initiatives will cer-
tainly concentrate on creating sophisticated AI versions with the ability of 
properly incorporating and assessing multimodal information to discover 
unique biomarkers as well as condition devices. 

• Customized medication strategies: Customizing therapy strategies as 
well as analysis to each client’s distinct account holds great promise for 
improving PD administration results. With the recognition of patient-spe-
cifc biomarkers, forecast of condition paths, and optimization of therapy 
routines based upon specifc functions and choices, monitored understand-
ing formulas can help in the advancement of customized medication strate-
gies [17]. 

• Real-time monitoring coupled with disease management: PD signs and 
electric motor variants can be constantly checked by utilizing wearable 
sensing unit innovations that provide real-time information streams [19]. 
Real-time medication management optimization, the forecast of sign head-
aches, and modifcations in condition state can all be attained via the evalu-
ation of sensing unit information utilizing monitored discovering formulas. 
Succeeding examinations will certainly focus on developing closed-loop 
systems and anticipating designs for aggressive health problem monitoring 
as well as customized therapies. 

• Understandable AI plus clinical decision support: Improving moni-
tored discovering versions’ interpretability and explainability is crucial 
to making it simpler to include them in the professional method. Future 
research will certainly focus on producing clear versions that clearly 
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describe forecasts enabling physicians to understand the hidden features 
that provide an overview of medical diagnosis options and customized 
therapy strategies [22]. 

• Huge data analytics plus collective research study: By making use of 
considerable datasets and participating research study networks, formerly 
extraordinary opportunities for enhancing PD medical diagnosis and ther-
apy are provided [18]. Big quantities of information from several resources 
can be evaluated by checking out understanding formulas to discover pat-
terns and anticipating pens connected to PD. Future research studies will 
certainly focus on producing information-sharing networks and scalable 
AI methods to sustain team research study jobs and speed up clinical 
innovations. 

Figure 14.1 details the contemporary pattern in the precision of focusing on 
a particular topic over a duration of ten years from 2015 to 2024. The details 
recommend a normal rise in the variety of research studies carried out annually 
alongside an exceptional enhancement in the precision of their searching. Starting 
in 2015 with ten research studies generating 75% precision, the pattern shows 
a constant climb year in and year out. By 2024, the variety of research studies 
increased to 55, with excellent precision of 95%. This higher fight in precision 
recommends improvements in study methods, information collection strategies, 
and logical devices for many years. The boosting precision shows the devotion of 
scientists as well as the expanding body of expertise in the area, adding to much 
more reputable and impactful searching. The intensifying variety of research 
studies suggests an increasing passion and fnancial investment in resolving the 
subject, possibly bringing about more advancements along with developments in 
the future. 

14.8 ETHICAL CONSIDERATIONS AND IMPLICATIONS 

This section focuses on the consequences and ethical matters of ML deployment, 
particularly supervised learning in healthcare for conditions detection like PD. The 
privacy of patients, data defenses, and result transparency are some major apprehen-
sions about AI-based medical systems. The good part is that using supervised learn-
ing, we will be able to see a future where PD is caught at an early stage, predicting 
outcomes, tweaking the treatment for individual needs, and actively monitoring the 
condition. In a nutshell, this brings up the need for transparency but also keeping AI 
model−driven innovation in check from an ethical standpoint. Figure 14.2 illustrates 
ethical issues. The highest emphasis has been placed on patient privacy and data that 
are fair or with few biases in several of these contexts 

14.8.1 DISCUSSION ON ETHICAL CONSIDERATIONS 

IN USING ML FOR HEALTHCARE 

To ensure the responsible and ethical use of these modern technologies, consider-
able honest problems are increased by the application of AI in healthcare, especially 
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FIGURE 14.2 Ethical considerations in using machine learning for healthcare. 

using monitored discovering for the medical diagnosis of conditions like PD. The 
following are several necessary ethical variables to think about: 

• Customer confdentiality together with privacy: Ensuring individual 
personal privacy along with personal privacy is important when making 
use of expert system solutions in professional settings. Clinical information 
handling should be done safely and in accordance with personal privacy 
legislation like General Data Protection Regulation (GDPR) and the Health 
Insurance Portability and Accountability Act (HIPAA). This consists 
of delicate info like hereditary information, case histories, and imaging 
examinations. To reduce the opportunity of people being reidentifed from 
professional datasets, anonymization as well as de-identifcation strategies 
ought to be used [5]. 

• Profcient consent: To safeguard people’s freedom and civil liberties, it is 
important to acquire educated authorization from clients prior to utilizing 
their information for an AI research study. Individuals need to have ade-
quate detail relating to the objectives of information collection, the benefts 
and drawbacks of the treatments, and the sharing and use of their informa-
tion. When getting specifc authorization is unfeasible, scientists must make 
certain that institutional evaluation boards (IRBs) and information admin-
istration structures supervise information collection and use treatments to 
keep honest criteria [8]. 

• Justness and bias: Preventing discrimination and variations in medical 
care results calls for ensuring justness and minimizing prejudice in AI for-
mulas. Variations in the precision of medical diagnosis and therapy sugges-
tions can arise from predispositions in information collection, mathematical 
style, and design training, particularly for underprivileged populations. By 
utilizing techniques like prejudice evaluation, fairness-aware formulas, and 
variety in dataset depiction, scientists need to function to locate and repair 
predispositions in datasets and formulas [2]. 

• Openness and excitement: Structure relies on obligation in healthcare 
decision-making needs, advertising, marketing excitement, and visibility in 
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expert system styles. It must be clear to medical professionals and patients 
precisely  how expert system formulas develop projections and pointers. 
Expert system versions can clear up their surprise characteristics and deci-
sion-making procedures by using techniques like openness protection sum-
mary generation and design interpretability methods [12]. 

• Responsibility along with tracking: To ensure the correct application of AI 
in medical care systems, accountability and governing surveillance need to 
be developed. It is suggested that standards and criteria be created by health-
care establishments’ governing bodies as well as expert organizations for the 
development, confrmation, and application of AI formulas in professional 
setups. To shield client rates of interests as well as maintain honest standards, 
regulative companies and moral evaluation boards ought to manage the ethi-
cal and lawful implications of AI applications in the healthcare sector [20]. 

14.8.2 IMPLICATIONS OF SUPERVISED LEARNING ALGORITHMS 

IN PD DIAGNOSIS AND TREATMENT 

Supervised understanding formulas are expert computer system programs that help 
medical professionals in the medical diagnosis and therapy of PD. These formulas 
utilize a range of information resources consisting of hereditary details, mind scans, 
and stride evaluation to establish the existence or lack of PD as well as its extent in a 
person [10]. Here’s how these algorithms can help: 

• Incredibly very early PD acknowledgment: The solutions have the capa-
bility to spot very early signs and symptoms of PD before it becomes worse. 
This can aid in decreasing symptoms and make it much easier to manage by 
allowing physicians to begin treating it early. 

• Personalized treatment: These formulas can help doctors in creating cus-
tomized therapy routines for every person. Given that everyone’s PD is a bit 
different, having a personalized therapy strategy can dramatically affect 
exactly how well the therapy succeeds [8]. 

• Observing signs: Specifc gadgets have the capacity to continually keep an 
eye on a person’s tasks. These devices’ details can be utilized by computer 
systems to forecast when a person’s signs and symptoms can get worse. 
This aids in medical professionals’ prep work and prompt monitoring for 
the correct therapy [2]. 

• Advancing medical professionals: These formulas offer additional assis-
tance to medical professionals in their restorative decision-making. After 
assessing a plethora of information, they make suggestions concerning 
what may be most reliable for every person. This assists in doctors’ deci-
sion-making pertaining to the very best strategy [24]. 

• Determining new clues: These formulas can recognize brand-new info 
by assessing all the information that might help doctors get a much bet-
ter understanding of PD [7]. They can recognize fresh indicators of health 
issues and make sensible restorative suggestions [19]. 
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Figure 14.2 outlines ethical concerns related to the use of healthcare data and AI 
applications. “Responsibility and Oversight” received the highest score of 6.1, empha-
sizing the critical importance of establishing clear accountability and governance in 
AI-driven healthcare systems. Close behind, “Protecting Patient Privacy” scored 
5.5, refecting strong concerns about individual confdentiality and data protection. 
“Addressing Bias and Fairness” received a rating of 4.9, underscoring the need to 
ensure equity and minimize algorithmic bias in AI-based decision-making. Meanwhile, 
“Ensuring Informed Consent” scored 3.7, pointing to room for improvement in ensur-
ing that individuals fully understand how their data are being used in AI applications. 
Lastly, “Transparency and Explainability” was rated 3.8, indicating a demand for greater 
clarity in how AI algorithms function and the rationale behind their outputs. Typically, 
the assessments expose that healthcare companies understand the moral problems that 
emerge when making use of customer info to notify AI-driven solutions. They further-
more determine the prompt demand for strong structures that can both relieve these 
problems as well as take full advantage of the benefts of AI in medical care. 

14.9 CONCLUSION 

The research fndings demonstrate that there is a great deal of capacity for improving 
individual end results and increasing our expertise of PD via the use of monitored 
discovering formulas in medical diagnosis and therapy of the disease. Very early dis-
covery, personalized treatment, responsive condition monitoring, professional choice 
assistance, and biomarker recognition are simply a few of the benefts that these formu-
las give. Monitored discovering formulas aid medical professionals in detecting indi-
viduals a lot more precisely, personalizing therapy routines to satisfy each individual’s 
demands, and properly anticipating exactly how conditions will proceed by analyzing 
a selection of information resources and recognizing patterns and partnerships. 

Future growths in monitored understanding formulas are expected to thrust a lot 
more progression in the recognition and therapy of PD. To enhance medical diagno-
sis accuracy and therapy effectiveness, future developments could utilize brand-new 
information resources consisting of hereditary sequencing, electronic biomarkers, 
and patient-reported end results. Additionally, the production of choice assistance 
devices and interpretable AI designs will certainly progress visibility and self-conf-
dence in professional decision-making treatments. 

Furthermore, to attend to concerns like information personal privacy predisposi-
tion along with moral factors to consider and to ensure responsible and moral use 
of AI innovation in medical care, teamwork among scientists, doctors, clients, and 
market stakeholders is vital. With each other, we can completely utilize supervised 
knowing formulas to transform the methods by which PD is dealt and improve the 
lifestyles of those who suffer from the disease. 
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15 Comparative Analysis 
of Supervised and 
Unsupervised 
Learning Algorithms 
in the Detection of 
Alzheimer’s Disease 

V. A. Binson, Starlet Ben Alex, 
and Rangith Kuriakose 

15.1 INTRODUCTION 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized 
by cognitive decline, memory loss, and a range of other neurological symptoms that 
interfere with daily life. It is the most common cause of dementia among the elderly, 
accounting for about 60−80% of dementia cases globally [1, 2]. The prevalence of 
AD is increasing rapidly due to the aging population, with an estimated 50 million 
people affected worldwide, a number projected to triple by 2050. In the United States 
alone, approximately 5.8 million people are affected with AD, with a new diagnosis 
every 65 seconds. The disease poses a signifcant public health challenge, not only 
due to its high prevalence but also because of the substantial emotional and fnancial 
burden it places on patients, families, and healthcare systems [3]. 

The diagnosis of AD currently relies on a combination of clinical evaluation, 
neuropsychological testing, and imaging techniques [4–6]. The primary diagnos-
tic criteria include a thorough assessment of the patient’s medical history, mental 
status, and physical examination. Neuropsychological tests are essential for eval-
uating cognitive functions, such as memory, attention, language, and problem-
solving abilities. Invasive diagnostic methods include cerebrospinal fuid (CSF) 
analysis, which involves measuring the levels of amyloid-beta and tau proteins, 
biomarkers strongly associated with AD pathology [7]. Noninvasive methods 
encompass neuroimaging methods such as magnetic resonance imaging (MRI) 
and positron emission tomography (PET), which provide critical information 
about brain structure and function [8]. MRI can detect brain atrophy, while PET 
scans can identify amyloid plaques and glucose metabolism patterns. However, 
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these traditional methods have limitations, including invasiveness, high costs, and 
limited availability, prompting the need for more accessible and effcient diagnos-
tic approaches. 

In recent years, machine learning (ML) has become an invaluable tool for improv-
ing the diagnosis of a wide range of human diseases, including respiratory, neuro, 
heart, infectious diseases, noninfectious diseases, and defciency diseases [9–16]. 
ML methods are also used for the detection of AD by analyzing complex datasets, 
including neuroimaging, genetic information, and clinical data. Supervised learning 
techniques, which are trained on labeled datasets, have shown great potential in clas-
sifying different stages of AD and distinguishing it from other forms of dementia. 
For instance, convolutional neural networks (CNNs) have been widely used in ana-
lyzing MRI and PET images, achieving high accuracy in identifying brain regions 
affected by AD. A study by Wen et al. showed that a CNN model could classify AD 
with an accuracy of 89% using MRI data, outperforming traditional methods [17]. 
Other supervised techniques, such as support vector machines (SVMs) and random 
forests, have also been employed to analyze biomarkers and genetic data, contribut-
ing to the early detection and progression monitoring of AD [18–21]. 

Unsupervised learning algorithms, which do not require labeled datasets, have also 
been applied in AD research to uncover hidden patterns and structures in the data [22]. 
Various techniques like clustering and dimensionality reduction have been used to iden-
tify subgroups of patients with similar disease characteristics and progression patterns. 
For example, the use of principal component analysis (PCA) has allowed researchers to 
reduce the dimensions of complex datasets, facilitating the identifcation of signifcant 
features related to AD [23, 24]. Additionally, clustering methods such as k-means and 
hierarchical clustering have been found effective for grouping patients based on similar 
cognitive and biological profles, aiding in the personalized treatment of the disease. 
The recent approach by Zhang et al. demonstrated the utility of unsupervised learn-
ing in discovering novel biomarkers for AD by analyzing multimodal data, including 
genetic, neuroimaging, and clinical information [25]. 

This chapter provides a comprehensive comparison and analysis of supervised 
and unsupervised learning algorithms in the detection of AD. The objective is to 
assess the pros and cons of each approach, highlight the most effective algorithms, 
and discuss their potential for clinical implementation. This chapter is relevant as it 
synthesizes the latest research fndings, providing a valuable resource for research-
ers and clinicians aiming to improve diagnostic accuracy and patient outcomes. The 
chapter is organized as follows: the frst section reviews the fundamental aspects 
of AD and its traditional diagnostic methods. The subsequent sections discuss 
supervised and unsupervised learning approaches, respectively, providing detailed 
analyses of recent studies and methodologies. Finally, the chapter concludes with a 
discussion on the future directions and potential of ML in AD, along with practical 
recommendations for integrating these technologies into clinical practices. 

The objectives of the work include 

• Comparing supervised and unsupervised learning algorithms for detecting 
AD 

• Evaluating the effectiveness of various ML models in AD diagnosis 
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• Identifying the advantages and limitations of different ML approaches 
• Discussing the potential for clinical implementation of ML techniques 
• Outlining future directions and opportunities in AD research using ML 

15.2 ML METHODS 

The application of ML in detecting AD has become increasingly prominent, as 
it offers the ability to analyze large datasets and identify patterns that might not 
be apparent through conventional statistical methods. The techniques used in this 
domain are primarily divided into supervised and unsupervised learning algorithms, 
each offering unique advantages for the analysis and prediction of AD progression. 

15.3 SUPERVISED LEARNING METHODS 

Supervised learning is a foundational concept in ML where the primary objective is 
to learn a mapping from input data to output labels based on a labeled dataset. This 
learning process involves a training stage where the algorithm is fed a dataset con-
sisting of input−output pairs. The inputs, also known as features, are variables that 
describe the data, while the outputs, or labels, represent the target variable that the 
model intends to predict [26, 27]. This type of learning is classifed into two main 
tasks: classifcation and regression. While classifcation involves predicting discrete 
labels, such as whether an email is genuine or spam, regression involves predicting 
continuous values, such as the price of a house, given its features. The working of 
supervised ML methods is shown in Figure 15.1. 

A variety of algorithms fall under supervised learning, each having specifc 
strengths and applications. SVMs are robust classifers that work well in high-
dimensional spaces and are particularly effective when the number of dimensions 
exceeds the number of samples [28]. Decision trees and their ensemble methods like 
random forests are another popular choice, especially valued for their interpretabil-
ity and ability to handle both categorical and continuous data [29]. Random forests 
improve on this by constructing multiple decision trees and merging their results to 

FIGURE 15.1 Working of a supervised machine learning method. 
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enhance accuracy and control overftting. K-nearest neighbors (KNN) is a nonpara-
metric method utilized for tasks such as classifcation and regression [30]. Logistic 
regression, despite its name, is a powerful classifer and models the probability of 
a discrete outcome, which is particularly useful for binary classifcation problems 
[31]. Naive Bayes, a probabilistic classifer based on Bayes’ theorem, assumes inde-
pendence between the features, which often works surprisingly well even when the 
independence assumption is violated [32]. 

Supervised learning’s power lies in its ability to build predictive models that 
are highly accurate and interpretable [33]. The availability of labeled data allows 
these algorithms to learn complex relationships and make precise predictions. In 
the medical feld, supervised learning algorithms are extensively used for diag-
nostic purposes, like predicting the likelihood of a disease based on patient data 
[34–38]. 

15.4 UNSUPERVISED LEARNING METHODS 

In contrast to supervised learning, unsupervised learning deals with unlabeled data. 
Unsupervised learning intends to uncover the underlying structure or patterns within 
the data without the guidance of a known outcome variable [39]. Since the data lack 
labels, the algorithms must infer the natural groupings or relationships directly from 
the input features. This type of learning is primarily exploratory, aiming to pro-
vide insights into the data’s intrinsic properties. Two primary tasks in unsupervised 
learning are clustering and dimensionality reduction. Clustering deals with grouping 
similar data points together, whereas dimensionality reduction involves reducing the 
feature size while retaining as much information as possible [40–42]. Working of 
unsupervised learning is depicted in Figure 15.2. 

Clustering algorithms are a fundamental aspect of unsupervised learn-
ing. K-means clustering is among the simplest and most widely used cluster-
ing methods. It splits the data into “k” clusters. Here, every data point would 
belong to the cluster with the nearest mean, serving as a prototype of the cluster 
[43]. Hierarchical clustering is another popular method, which builds a hierar-
chy of clusters either by progressively merging smaller clusters (agglomerative) 

FIGURE 15.2 Working of an unsupervised machine learning method. 
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or by recursively splitting larger clusters (divisive) [44]. Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) is a more advanced cluster-
ing technique that groups data points that are closely packed together and marks 
points that lie alone in low-density regions as outliers [45]. Dimensionality 
reduction is another crucial aspect of unsupervised learning, especially useful 
in high-dimensional datasets where visualization and computation can become 
challenging. PCA is a commonly used method that transforms the data into a new 
coordinate system, where the largest variance by any projection of the data lies 
on the frst coordinate (the frst principal component), the second largest variance 
on the second coordinate, and so on [46, 47]. t-Distributed Stochastic Neighbor 
Embedding (t-SNE) is another dimensionality reduction method that excels at 
preserving the local structure of the data, making it especially effective for visu-
alizing complex datasets in a reduced-dimensional space. In healthcare, unsuper-
vised learning can help identify patient subgroups with similar characteristics, 
leading to more personalized treatment plans [48–50]. 

15.5 SUPERVISED LEARNING ALGORITHMS FOR DETECTING AD 

Supervised learning algorithms have been instrumental in the early detection of AD 
by leveraging labeled datasets to identify patterns and biomarkers related to the con-
dition. The general structure of supervised learning algorithms in AD detection is 
shown in Figure 15.3. These models can classify patients based on imaging data, 
genetic information, and cognitive test scores, providing valuable support for early 
diagnosis and treatment planning. Table 15.1 shows different approaches from litera-
ture that utilized supervised learning techniques for AD detection. 

15.5.1 SVMS 

In connection with AD detection, SVMs are particularly useful for handling high-
dimensional data, such as neuroimaging data. SVM works by identifying the hyper-
plane that most effectively separates the data into distinct classes − in this case, 
identifying patients with AD, mild cognitive impairment (MCI), or normal cognitive 
function [57]. The algorithm tries to maximize the margin between the classes, which 
aids in the reduction of the error of misclassifcation. SVM is statistical supervised 

FIGURE 15.3 Supervised learning algorithms in AD detection based on brain images. 
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TABLE 15.1 
Studies with Supervised Learning Algorithms for Alzheimer’s Disease Detection 

Accuracy Sensitivity Specifcity 
Author Year Dataset Method (%) (%) (%) Reference 
Liu et al. 77 HC, Stacked autoencoder 87.76 88.57 87.22 [34] 
(2014) 65 AD + softmax 

Li et al. 52 HC, RBM + drop out, 91.4 − − [18] 
(2015) 51 AD SVM 

Ortiz et al. 68 HC, Ensemble of deep 90 86 94 [51] 
(2016) AD 70 belief networks 

Jha and 44 HC, PCA-KNN 89.47 94.12 84.09 [52] 
Kwon (2016) 51 AD 

Rabeh et al. 50 HC, Decision tree 90.66 − − [20] 
(2016) 8 AD 

Aderghal 228 HC, CNN 83.7 79.16 87.2 [53] 
et al. (2017) 188 AD 

Khedher 229 HC, ICA–SVM 89.5 92.4 86.6 [19] 
et al (2017) 188 AD 

Korolev et al. 61 HC, 3D-CNN 80 − − [54] 
(2017) 50 AD 

Valliani and 233 HC, ResNet 81.3 − − [55] 
Soni (2017) 188 AD 

Bi et al. 35 HC, Random SVM cluster 94.44 − − [21] 
(2018) 25 AD 

Lin et al. 229 HC, ROI-based CNN 88 − − [56] 
(2018) 188 AD 

Zeng et al. 92 HC, SDPSO-SVM 81.25 − − [57] 
(2018) 92 AD 

Raza et al. 232 HC, DNN, SVM 98.74 98.5 98.21 [58] 
(2019) 200 AD 

Kruthika and 137 HC, Gaussian naive Bayes 96.31 91.27 89.9 [36] 
Maheshappa 178 AD classifer + SVM + 
(2019) KNN 

Richhariya 228 HC, USVM -RFE 89.2 84.87 93.13 [59] 
et al. (2020) 187 AD 

Liang and 68 HC, ADGNET with 98.71 98 99.24 [60] 
Gu (2020) 81 AD attention 

Wen et al. 330 HC, PCA, extreme learning 88.79 − − [17] 
(2020) 336 AD machine, CNN 

Li et al. 226 HC, FSNet 84.4 83.6 85.9 [61] 
(2022) 186 AD 

Kim et al. 61 HC, DBAD CNN model 87.1 93.3 85.5 [62] 
(2022) 37 AD 

Zeng et al. 92 HC, DBN-based multitask 98.62 − − [63] 
(2023) 92 AD learning 

Notes: HC = healthy control; AD = Alzheimer’s disease; CNN = convolutional neural network. 
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learning algorithms designed to solve linear classifcation tasks, effectively distin-
guishing between two distinct groups of data, as outlined in Equation (15.1). 

m: ˜ Rf R  (15.1) 

Given a set S = {(x1, y1), …, (xn, yn)}, where xi ϵ Rm and yi ϵ {+1, −1}, using a linear 
function: 

n 

T +f x( )  = w x b = ˜w xi i + b (15.2) 
i=1 

A hyperplane is identifed within the variable space that divides the two classes, 
ensuring the maximum possible separation margin M 

2
M = 

w 

The primary goal of the SVM is to maximize the margin M by minimizing the 
objective function: 

1 2 
m 

min w + C °̃ i2 (15.3) i=1 

Ts a y w  ) ,. .  ( x + b ˆ 1−° ° ˆ 0i i i i 

where ̃ i denotes the distance from hyperplane to misclassifed points, ̃ i ° 0, w is 
the support vector, y is the category, and C is a regularization parameter to regulate 
the overftting [38]. Li et al. demonstrated an approach to detect AD using a dataset 
comprising 52 healthy control (HC) individuals and 51 patients diagnosed with AD 
[18]. They employed a hybrid approach combining restricted Boltzmann machines 
(RBMs) with a dropout technique, followed by an SVM classifer. RBM, an unsuper-
vised learning algorithm, was utilized to extract high-level, relevant features from 
the data by learning a probabilistic model. After feature extraction, these distilled 
features were then fed into an SVM, which was used to classify the individuals 
as either HC or AD. This combination of deep feature learning through RBM and 
robust classifcation with SVM resulted in a notable accuracy of 91.4%, demonstrat-
ing the effcacy of their method in distinguishing between healthy controls and AD 
patients. 

15.5.2 DECISION TREES 

Decision trees are a straightforward and interpretable method for supervised classi-
fcation tasks. They function by recursively splitting the dataset based on feature val-
ues, creating a tree-like structure where each node represents a feature, each branch 
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corresponds to a decision rule, and each leaf indicates an outcome [29]. The entropy 
and information gain calculation formulas follow: 

c 

Entropy = −˜Plog2P (15.4) i i 

i=1 

where Pi is the probability of class i, and c is the total number of classes. 

Information Gain Entropy − [(weighted _ average × entropy each _= ( attribute)] 
(15.5) 

In AD detection, decision trees can help identify key biomarkers or clinical fea-
tures that differentiate between AD, MCI, and healthy controls. The simplicity of 
decision trees makes them easy to interpret, which is crucial in a clinical setting 
where understanding the decision-making process is important. However, decision 
trees are prone to overftting, especially with noisy data, which can be mitigated by 
techniques such as pruning or using ensemble methods like random forests. Rabeh 
et al. conducted a study using a decision tree algorithm to distinguish between HC 
individuals and those with AD [20]. They utilized a relatively small dataset con-
sisting of 50 HC participants and eight AD patients. Despite the limited sample 
size, the decision tree method proved to be effective, achieving an accuracy rate of 
90.66%. 

15.5.3 KNN 

KNN is a nonparametric, instance-based learning algorithm employed for tasks such 
as classifcation and regression. The KNN algorithm classifes a sample based on the 
majority class of its k-nearest neighbors in the feature space [29]. For a designated 
positive integer K, the KNN algorithm identifes the K nearest observations to a 
test point and computes the conditional likelihood of x belonging to a certain class, 
labeled as j using the equation 

1
P Y( = | = x = ˜ I Y(j X  ) ( )i = j) (15.6) 

K 
i A˙ 

where x is the test point, X is the feature matrix, and Y the class labels. 
In AD research, KNN can be applied to different types of data, including neu-

roimaging and genetic data, to classify patients into various diagnostic categories. 
The choice of k, the number of neighbors, is crucial as it affects the algorithm’s bias-
variance trade-off. KNN is simple and effective in instances where the relationship 
between the input data and the output class is complex. 

In their study, Jha et al. applied PCA along with a KNN algorithm to classify indi-
viduals into two categories: normal controls (NC) and AD patients [52]. The dataset 
comprised 44 NC subjects and 51 AD patients. The use of PCA helped in reducing 
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the dimensionality of the data, allowing the model to focus on the most signifcant 
features that differentiate the two groups. The subsequent application of the KNN 
algorithm yielded promising results. The model achieved an accuracy of 89.47%, 
which indicates that it correctly classifed the majority of the cases. Moreover, it 
demonstrated a high sensitivity of 94.12%, meaning it was very effective in correctly 
identifying the AD cases. The specifcity was 84.09%, showing a reasonable ability 
to correctly identify the NC cases. 

15.5.4 ENSEMBLE OF DEEP BELIEF NETWORKS 

The ensemble of deep belief networks (DBNs) is a powerful approach in the feld of 
M:, especially in the realm of deep learning, where multiple DBNs are trained and 
then combined to improve the accuracy and robustness of predictions [51, 64, 65]. 
A DBN is a variant of a deep neural network comprising multiple layers of RBMs 
or autoencoders, where each layer learns to represent the data in increasingly 
abstract ways. The ensemble method involves training several DBNs indepen-
dently and then aggregating their predictions, typically through averaging or 
majority voting, to reach a fnal decision. The advantage of using an ensemble of 
DBNs lies in the “wisdom of the crowd” effect, where the combination of multiple 
models can often outperform a single model by reducing the risk of overftting 
and increasing generalization. Each DBN in the ensemble may capture different 
aspects of the data, and their combined output can smooth out the variability that 
might affect a single network. 

In their study, Ortiz et al. utilized an ensemble of DBNs to differentiate between 
68 NCs and 70 patients with AD [51]. The research aimed to leverage the strengths 
of ensemble learning in enhancing the accuracy as well as reliability of detecting 
AD, a task that requires discerning subtle and complex patterns in neuroimaging or 
other diagnostic data. 

15.5.5 CNNS 

CNNs are a variant of the supervised learning method popularly employed in 
the detection of AD due to their ability to automatically extract and learn hier-
archical features from medical imaging data [54, 56, 66, 67]. The structure of 
CNN includes convolutional layers, pooling layers, and fully connected layers, 
which makes them particularly well suited for analyzing visual data such as MRI 
scans, PET scans, and even functional MRI (fMRI) [68]. For AD detection, CNNs 
are trained on labeled datasets containing brain scans from both AD patients 
and healthy controls. During the training phase, CNNs learn to identify complex 
patterns and biomarkers associated with AD, such as atrophy in specifc brain 
regions or abnormalities in brain activity [69–71]. CNNs are particularly effective 
in this domain because they can handle the high-dimensional nature of imaging 
data and automatically extract relevant features, eliminating the need for manual 
feature engineering. Recent studies have depicted the effcacy of CNNs in accu-
rately diagnosing AD. For instance, by leveraging large, well-annotated datasets 
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such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), researchers 
have achieved impressive results, with some models reaching accuracies exceed-
ing 90%. Furthermore, CNNs can also be fne-tuned or adapted for various stages 
of ADs, potentially aiding in early diagnosis, monitoring disease progression, 
and even identifying individuals at risk of developing AD. Aderghal et al. utilized 
a dataset comprising 228 healthy controls and 188 AD patients to evaluate the 
effectiveness of CNNs for AD detection. The CNN model achieved an accuracy 
of 83.7%, demonstrating its capability to distinguish between AD and non-AD 
cases [53]. Furthermore, the model attained a sensitivity of 79.16% and a specifc-
ity of 87.2%, indicating a relatively high ability to correctly identify true positives 
and true negatives, respectively. 

15.6 UNSUPERVISED LEARNING ALGORITHMS 
FOR DETECTING AD 

Unsupervised learning algorithms are used to fnd hidden patterns or intrinsic struc-
tures in unlabeled data. In the context of AD, these methods can be used to discover 
subgroups of patients, detect outliers, or reduce the dimensionality of the data for 
further analysis. Table 15.2 shows different studies that utilized unsupervised learn-
ing algorithms in the detection of AD. Unsupervised learning methods, particularly 
clustering, are invaluable in AD research for discovering new disease phenotypes 
and understanding the heterogeneity of the disease [35, 37]. By uncovering distinct 
patient groups, researchers can tailor treatment approaches and improve diagnostic 
accuracy. 

15.7 K-MEANS CLUSTERING 

This technique partitions the data into k clusters such that each data point belongs 
to the cluster with the nearest mean. It is commonly used for segmenting patients 
into different diagnostic categories based on similarities in clinical and imaging data 
[42, 43]. However, k-means requires the specifcation of the number of clusters in 
advance and is sensitive to initial cluster center placement. 

Al-Nuaimi et al. conducted a study utilizing k-means clustering to differenti-
ate between healthy controls and AD patients [40]. The dataset comprised eight 
healthy controls and three AD patients. Through this unsupervised learning tech-
nique, they achieved an accuracy of 84.6%. Notably, the model demonstrated per-
fect sensitivity (100%), meaning it successfully identifed all AD cases. However, 
the specifcity was relatively low at 50%, indicating a higher rate of false posi-
tives, where healthy individuals were incorrectly classifed as having AD. This 
highlights the model’s ability to detect AD with high sensitivity but suggests a 
need for further refnement to reduce false positives and improve overall specifc-
ity. Liu et al. utilized a combination of PCANet and k-means clustering to ana-
lyze a dataset consisting of 231 healthy controls and 198 AD patients [24]. The 
approach obtained an accuracy of 84.17%, indicating a reasonably good perfor-
mance in distinguishing between HC and AD. 
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TABLE 15.2 
Studies with Unsupervised Learning Algorithms for Detecting Alzheimer’s 
Disease 

Author Accuracy Sensitivity Specifcity 
Year Dataset Method (%) (%) (%) Reference 
Tong et al. 234 HC, Multiple instance 89 84.9 92.6 [35] 
(2014) 198 AD learning 

Al-nuaimi 8 HC, K-means clustering 84.6 100 50 [40] 
et al. 3 AD 
(2015) 

Kumar et al. 145 HC, K-means 85.5 − − [72] 
(2018) 68 AD 

Ju et al. 79 HC, Autoencoder based on 86.47 92 81 [37] 
(2017) 91 MCI unsupervised learning 

Lazli et al. 50 HC, Possibilistic FCM 93.65 90.08 92.75 [73] 
(2019) 45 AD clustering 

Razavi et al. 52 HC, Sparse fltering and soft 98.3 − − [74] 
(2019) 51 AD max regression 

Bi et al. 307 HC, Two-sample t-test, 89.15 − − [23] 
(2020) 243 AD PCANet, k-means++ 

Mallik and − DBSCAN and 92.9 − − [41] 
Zhao hierarchical clustering 
(2020) 

Shin et al. − GAN with discriminator- 94.1 94 − [75] 
(2020) adaptive loss fne-tuning 

Baydargil 148 HC, Unsupervised adversial 96.03 − − [50] 
et al. 25 AD deep learning 
(2021) 

Jin et al. 530 HC, Variational autoencoder, 94 99 94 [49] 
(2021) 202 AD generative adversarial 

network, and multilayer 
perceptron 

Zhang et al. 287 HC, CMC: consensus 57.26 − − [25] 
(2021) 159 AD multiview clustering 

Cabreza 755 HC, Generative adversarial 74.44 73.86 − [76] 
et al. 622 AD network 
(2022) 

Shi et al. 83 HC, Generative adversarial 92.9 − − [48] 
(2022) 57 AD network with multiple 

losses 

Liu et al. 231 HC, PCANet, k-means 84.17 79.65 88.05 [24] 
(2023) 198 AD 

Zhang et al. − Generative adversarial 89.9 82.5 85.9 [77] 
(2024) network with pyramid 

attention blocks 
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15.8 POSSIBILISTIC FCM CLUSTERING 

Possibilistic Fuzzy C-Means (PFCM) clustering is an advanced variant of the 
traditional Fuzzy C-Means (FCM) algorithm, designed to handle data uncertainty 
and ambiguity, which is particularly useful in medical image analysis, like the 
detection of AD [78–80]. Unlike traditional clustering methods, PFCM assigns 
membership probabilities and possibility values to data points, allowing for a 
more fexible and robust classifcation, especially in cases where data may not 
clearly belong to one cluster. In the context of AD detection, PFCM can be used 
to analyze neuroimaging data, such as MRI or PET scans, by clustering different 
brain regions or patterns of atrophy and providing a nuanced classifcation that 
accounts for the inherent uncertainty in clinical diagnoses [81]. This approach can 
improve the distinction between healthy controls, MCI, and AD patients, leading 
to better diagnostic accuracy and more personalized treatment planning. In the 
study by Lazli et al., the PFCM clustering method was applied to classify a data-
set of 50 HC and 45 AD cases [73]. The results demonstrated high performance, 
with an accuracy of 93.65%, meaning the method correctly classifed 93.65% of 
all cases. 

15.9 HIERARCHICAL CLUSTERING 

Hierarchical clustering is a popularly used method for organizing data into a hier-
archical structure based on similarities or distances between data points. In AD 
detection, hierarchical clustering can be instrumental in analyzing and classify-
ing patient data to reveal patterns indicative of the disease [82–84]. This method 
typically employs two approaches: agglomerative and divisive. The agglomerative 
approach begins with each data point as its own cluster and progressively merges 
the closest clusters using a distance metric, such as Euclidean distance, until all 
points are combined into a single cluster or a predefned number of clusters is 
reached [85]. In contrast, the divisive approach starts with all data points in a sin-
gle cluster and iteratively divides this cluster into smaller clusters until each point 
is isolated or the desired number of clusters is achieved [86]. In the context of AD 
detection, hierarchical clustering has been utilized to identify distinct patterns and 
groupings within patient data, such as neuroimaging, genetic profles, or cognitive 
assessments. For example, studies have shown that hierarchical clustering can dif-
ferentiate between AD and healthy controls by analyzing features from structural 
MRI scans [87–89]. 

15.10 DBSCAN 

DBSCAN is a clustering algorithm that groups data points based on their den-
sity, making it particularly useful for identifying clusters of varying shapes and 
sizes in complex datasets [41]. In the context of AD detection, DBSCAN can be 
an effective tool for analyzing patient data to uncover patterns and classify cases 
[90, 91]. Unlike hierarchical clustering, which relies on a hierarchical structure 
of clusters, DBSCAN focuses on the density of data points to form clusters. The 
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algorithm operates by identifying clusters as regions of high density separated by 
regions of low density. It uses two key parameters: the radius (ε) within which to 
search for neighboring points, and the minimum number of points required to form 
a dense region (MinPts). Points within dense regions are grouped into clusters, 
while points in sparse regions are labeled as noise or outliers [92]. In AD research, 
DBSCAN has been applied to different types of data, including neuroimaging, 
genetic, and clinical data, to identify distinct patterns related to the disease. For 
instance, DBSCAN has been used to analyze structural MRI scans to detect abnor-
mal brain regions associated with AD [41]. 

15.11 GENERATIVE ADVERSARIAL NETWORKS 

Generative adversarial networks (GANs) are a type of ML framework created to 
generate new data samples that mimic a given dataset [93, 94]. They consist of two 
neural networks − a generator and a discriminator − engaged in a competitive pro-
cess. The generator creates synthetic data samples, while the discriminator evaluates 
them against real data samples, providing feedback to the generator. This adversarial 
process continues until the generator produces samples indistinguishable from real 
data [95]. 

In the context of AD detection, GANs can be leveraged to enhance diagnostic 
processes and research. One application is in generating synthetic neuroimaging 
data, such as MRI scans, to augment existing datasets. This is especially useful in 
cases where data are scarce or imbalanced, as GANs can create high-quality, realis-
tic images that can be used to train more robust diagnostic models [96]. 

15.12 DISCUSSION 

The comparative analysis of supervised and unsupervised learning techniques in AD 
detection reveals their respective strengths and limitations in addressing the com-
plexities of this neurodegenerative disorder. Supervised learning algorithms, such 
as SVMs and neural networks, rely on labeled datasets to train models, achieving 
high accuracy when substantial annotated data are available. For example, while 
SVMs are effective in high-dimensional spaces, often benefting from feature selec-
tion techniques, neural networks, particularly CNNs, excel in analyzing complex 
neuroimaging data like MRI and PET scans [53, 67]. These models offer robust per-
formance in classifcation tasks but are heavily dependent on the quality and quantity 
of labeled data, which can be challenging to acquire in the context of AD due to its 
variability and the effort required for data annotation. 

In contrast, unsupervised learning algorithms, such as clustering methods and 
dimensionality reduction techniques, offer valuable insights into the intrinsic struc-
ture of AD-related data without relying on predefned labels [72–75]. Hierarchical 
clustering and DBSCAN, for instance, reveal underlying patterns and groupings 
within neuroimaging and genetic data, which can uncover novel disease subtypes 
or biomarkers not readily apparent through supervised learning. Dimensionality 
reduction methods like PCA and t-SNE aid the visualization and interpretation of 
high-dimensional data, highlighting key features associated with AD progression. 
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Despite their advantages, unsupervised methods face challenges such as diffculty 
in interpreting clusters, the potential for overftting to noise, and the lack of ground 
truth for performance evaluation. 

Combining supervised and unsupervised approaches can leverage the strengths of 
both methods, offering a more comprehensive understanding of AD [24]. Integrative 
methods that combine multimodal data, such as neuroimaging and genetic informa-
tion, can further improve diagnostic accuracy and predictive power. Moreover, tech-
niques like transfer learning and domain adaptation can help bridge the gap between 
different datasets, enhancing the generalizability of models and their applicability 
across diverse populations [55]. Addressing ethical considerations related to data 
privacy, consent, and algorithmic bias is also crucial for the responsible use of ML 
in healthcare. By addressing these challenges and leveraging the complementary 
strengths of supervised and unsupervised learning, researchers and clinicians can 
advance the feld of AD detection and improve diagnostic and therapeutic strategies 
for this debilitating condition. 

15.13 CONCLUSION 

The comparative analysis of supervised and unsupervised learning methods shows 
the potential and limitations of each approach in the detection and understanding 
of AD. Supervised learning methods, such as SVMs and neural networks, offer 
high accuracy and reliability when trained on extensive, labeled datasets, making 
them effective for precise classifcation tasks. However, their dependence on large 
volumes of annotated data and susceptibility to overftting highlight the need for 
enhanced data collection and regularization techniques. On the other hand, unsu-
pervised learning algorithms, including clustering methods and dimensionality 
reduction techniques, provide valuable insights into the underlying structure of 
AD-related data and reveal novel patterns and biomarkers without requiring labeled 
examples. These methods facilitate the exploration of complex, high-dimensional 
datasets but face challenges in cluster interpretation and performance validation. 
Integrating supervised and unsupervised approaches can leverage the strengths of 
both, offering a more comprehensive understanding of AD and improving diagnos-
tic and therapeutic strategies. Future research should focus on combining multi-
modal data, enhancing model interpretability, and addressing ethical considerations 
to advance the feld. 
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16.1 INTRODUCTION 

Neurological problems affect people of all ages. The prevalence of these disorders 
has signifcantly risen over the past four to fve years. In numerous instances, there 
are no detectable tools for diagnosing neurological disorders. A primary cause of 
these disorders is electrical abnormalities in the brain. Today, various neurological 
disorders can be diagnosed using advanced technologies such as electroencepha-
logram (EEG), magnetic resonance imaging (MRI), computed tomography (CT) 
scans, and positron emission tomography (PET) scans. In previous years, machine 
learning (ML) algorithms were primarily used to analyze neuroimaging data when 
datasets were small. However, with larger datasets, deep learning (DL) has become 
necessary. 

Parkinson’s disease (PD), schizophrenia (SZ), and Alzheimer’s disease (AD) 
are three prevalent neurological conditions [1]. AD is observed by increasing men-
tal decline; it usually affects elderly persons as a result of specifc brain regions 
deteriorating. Extensive research has been undertaken to accurately identify the 
causes of this degeneration and develop automated methods for detecting degenera-
tion patterns in neuroimages. It ranks as the fourth leading contributor to mortality 
worldwide, following heart disease, cancer, and brain hemorrhage. AD has three 
states: very mildly demented, mildly demented, and moderately demented [2] (see 
Figures 16.1–16.3). 

In the very mildly demented stage, patients begin to forget where they have kept 
their belongings and may have diffculty remembering recently learned names. In 
the mildly demented stage, patients have diffculty remembering words, often get 
lost even on familiar routes, and show a decrease in focus and work abilities. In the 
moderately demented stage, they begin to forget recent activities and signifcant past 
events, struggle with budgeting, fnd it diffcult to go outside alone, and experience 
a loss of empathy [3]. 

Tremors, bradykinesia, stiffness, and unstable posture are among the motor 
signs of PD disease, a neurodegenerative condition brought on by the loss of 
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FIGURE 16.1 MRI of a mildly demented patient. 

FIGURE 16.2 Moderately demented. 
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FIGURE 16.3 Very mildly demented. 

dopaminergic activity. PD is the second foremost neurological disease affecting 
older persons [4]. The exact cause of the disease remains unknown. PD has high 
rates of mortality and requires early diagnosis and proper treatment to allevi-
ate personal, social, and national burdens. Two imaging techniques commonly 
utilized to detection are PET and single photon emission computed tomography 
(SPECT). Table 16.1 presents an overview of the procedures followed in recent 
research that employed statistical and ML methods to forecast the presence of PD 
from MRI data. 

Schizophrenia is a chronic mental condition that impacts around 1% of the 
population globally. According to a World Health Organization (WHO) report, 
around 24 million individuals around the world, or roughly one in every 300, 
are affected by schizophrenia (0.32%). The incidence is higher among adults, at 
one in 222 (0.45%). Schizophrenia is not very common compared to several other 
mental diseases. It typically begins in adulthood or in the 20s, usually men suf-
fering it sooner than women. Some schizophrenia symptoms may be explained 
by diffculties with the neurological system’s corollary discharge process, which 
may make it diffcult for patients to distinguish between internally and externally 
produced feelings. The exact cause of schizophrenia remains unknown, but fac-
tors such as stressful life events, drug use, and their combinations have been 
proposed to have contributed to its growth. Neuroimaging is crucial for reveal-
ing both functional and structural changes in the human brain. Individuals with 
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TABLE 16.1 
An Overview of the Procedures Followed in Recent Research that Employed 
Statistical and ML Methods to Forecast the Presence of PD from MRI Data 

Reference Input Data Active Method Accuracy (%) 
[5] PD (57) Voxel-based morphometry (VBM), 100 

diffusion tensor imaging (DTI) 

[6] PSP (21) Support vector machine (SVM) 

[7] PD (27) Functional connectome 80 

HC (38) SVM 

HC (26) 

[8] PPMI cohort Connectivity measures 93 

PD (374) SVM 

HC (169) 

[9] PD (30) Region of interest based 86.67 

HC (30) SVM 

schizophrenia often face human rights breaches in both treatment facilities and 
the community. People with this illness experience social exclusion, and relation-
ships with family and friends suffer as a result of the solid and pervasive stigma 
against them. Due to discrimination brought on by this stigma, they may have 
fewer options for housing, work, education, and general healthcare. Structural 
MRI of brain anatomy offers a reliable method for diagnosing schizophrenia. 
In the domain of medical imaging, convolutional neural networks (CNNs) have 
shown to be benefcial instruments for the automated diagnosis of a variety of 
neurological disorders, including schizophrenia. Millions of people worldwide 
suffer from schizophrenia, which has a major negative impact on both individuals 
and society. Early and correct diagnosis is critical to effective treatment and man-
agement. However, clinical evaluations and manual brain scan interpretation are 
signifcant components of traditional diagnostic techniques, which can be incon-
sistent and error-prone. The development of CNNs, which use DL to recognize 
complex patterns in MRI images that may be suggestive of schizophrenia, has 
made a potent substitute available. 

The motivation of this chapter is to address the limitations of traditional MRI 
analysis in diagnosing neurological disorders and to explore how DL can revolution-
ize this feld. Conventional approaches often struggle with accuracy, scalability, and 
effciency, leading to unreliable diagnostic results. 

The objective of this chapter is achieved through the following subtasks: 

i. Compare DL methods with traditional MRI analysis for diagnosing schizo-
phrenia, PD, and AD. 

ii. Outline each disorder’s data preprocessing steps and algorithm choices. 
iii. Explore performance analysis of DL in neurological diagnosis and identify 

challenges in extending these methods to new conditions. 
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16.2 RELATED RESEARCH 

Zhang et al. [10] demonstrated a DL-based strategy for identifying the difference 
between healthy brains and those with AD. Because AD affects many people, there has 
been much interest in detecting the condition using MRI and DL. CNNs have been uti-
lized in several works to categorize various AD phases and distinguish them from mild 
cognitive impairment (MCI) and ft persons. The use of MRI and DL for AD detection 
has become a primary research focus due to the disease’s prevalence and impact. Suk 
et al. [11] utilized a DL model combining sparse autoencoders and a deep belief network 
to extract features from MRI images, achieving signifcant accuracy improvements in 
AD classifcation. Payan and Montana [12] developed a 3D CNN to process volumetric 
MRI data, demonstrating superior performance in detecting early AD stages compared 
to traditional ML methods. Liu et al. [13] used a multimodal approach integrating MRI 
with PET data, using a DL framework to enhance the diagnostic accuracy of AD. 

In [14], the authors applied a CNN to structural MRI scans, focusing on the sub-
stantia nigra region, which is critical in PD pathology. Their model obtained sig-
nifcant accuracy as well as specifcity in identifying PD patients from ft persons. 
Pereira et al. [15] used resting-state functional MRI (fMRI) data, CNNs could dis-
tinguish PD patients and healthy controls, yielding encouraging fndings. MRI-based 
DL has showed promise in detecting and diagnosing schizophrenia, a complicated 
psychiatric condition with various symptoms. Vieira et al. [16] created a deep neural 
network (DNN) to examine brain connection patterns in fMRI data. Their approach 
distinguished between patients with and without schizophrenia. 

16.3 SUMMARY OF DL TECHNIQUES 

Recent developments in neuroimaging modalities, including PET, magnetoencepha-
lography (MEG), and MRI, have improved our knowledge of how the brain functions. 
Numerous machine and DL approaches, along with high-performance computer tools, 
have made diagnosing and classifying neurological diseases possible. PD has been 
identifed in MRI scans using various ML approaches, such as SVM, artifcial neural 
networks (ANN), decision tree (DT) models, and Bayes algorithms. The symptoms 
of PD frequently begin on one side of the body and may be related to asymmetries in 
the brain’s cortical or subcortical systems [17]. Table 16.2 summarizes recent research 
employing MRI techniques to predict PD using ML methodologies. Supervised learn-
ing approaches are practical for ML applications such as regression, classifcation, 
pattern recognition, and feature extraction. Neurological problems involve the entire 
body, including the brain, spinal cord, and nerves, according to scientifc classifca-
tions. Three prevalent neurological ailments include PD, AD, and mental disorders, 
such as schizophrenia. In this context, computational intelligence algorithms, particu-
larly DL techniques, have emerged as powerful tools for automating the analysis of 
medical images and improving the accuracy of neurodisorder diagnosis. Currently, 
various DL approaches are being used to study and cure neurodiseases. These include 
neural networks such as ANN, DNN, Autoencoder (AE), CNN, probabilistic neural 
networks (PNN), K-nearest neighbors (K-NN), recurrent neural networks (RNN), and 
long short-term memory (LSTM). 
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TABLE 16.2 
Different DL Techniques for Detecting Neurodisorders 

Model Description Application 
ANN (Artifcial ANN technique simulates the brain and Network Architecture, language 

Neural nervous system’s electrical activity. translation, sentiment analysis, 
Networks) and speech recognition. 

Convolutional CNN has shown impressive outcomes in Image classifcation, image 
Neural image segmentation, detection, and segmentation, medical image 
Networks classifcation tasks. analysis, etc. 

LSTM and RNNs, including LSTM variants, are Language modeling, speech 
Recurrent instrumental in analyzing sequential recognition, sentiment analysis, 
Neural data, such as time-series machine translation, text 
Networks electroencephalogram (EEG) recordings generation, etc. 
(RNNs) or longitudinal patient data. 

Generative GANs are used to produce synthetic data Data generation, style transfer, 
adversarial that approximately resemble real patient super-resolution, text-to-image 
network image. This capability is valuable for synthesis, etc. 
(GAN) data augmentation, enhancing the 

robustness of DL models in 
neuroimaging tasks. 

Graph neural GNNs are tailored for analyzing complex Social network analysis, drug 
network networks, such as brain connectivity discovery, traffc prediction, 
(GNN) networks derived from MRI or diffusion knowledge graph reasoning, etc. 

tensor imaging (DTI) data. 

Pretrained Transfer learning techniques, utilizing Image classifcation, object 
models and pretrained models on large-scale detection, speech recognition, 
transfer datasets, enable the transfer of medical image analysis, 
learning knowledge from related tasks to bidirectional encoder 

neurodisorder classifcation and representations from 
prediction. transformers (BERT) (for natural 

language processing [NLP], 
residual neural network 
(ResNet) (for image 
classifcation), etc. 

K-Nearest The K-NN approach is mostly utilized for Image recognition, medical 
Neighbors regression and classifcation diagnosis, pattern recognition 
(K-NN) applications. 

16.4 CONVOLUTIONAL NEURAL NETWORK (CNN) 

Convolutional, pooling, and fully connected are the three components of a CNN, 
which is a mathematical process. Features are removed from the input data and 
placed in the convolutional layer. The pooling layer automatically reduces the dimen-
sionality of the data by applying flters. The fully linked layer maps the retrieved 
characteristics to the fnal output. 
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FIGURE 16.4 CNN architecture diagram. 

CNNs are very helpful since they automatically recognize features, saving human 
labor. The term “convolution” in CNNs describes a mathematical procedure in which 
two functions are multiplied to produce a third function that shows how the shape 
of one function is changed by the other. The CNN model used for feature extraction 
aims to reduce a dataset’s feature count. It is mostly applied to unstructured datasets 
(such as pictures and videos) and creates new features that contain the data from the 
initial features. The CNN architecture diagram in Figure 16.4 depicts the numerous 
layers involved in this process. 

Fully connected, activation, pooling, and convolutional layers are all part of a 
CNN’s structure. Convolutional layers create feature maps by applying a series 
of learned flters to their inputs. Each feature map’s neurons are connected to a 
particular group of neurons in the receptive feld − a small portion of the previous 
layer − to guarantee that the entire image is captured. A nonlinear activation layer 
usually comes after convolutional layers. Next, by reducing the spatial dimen-
sions of their inputs, pooling layers help to prevent overftting by lowering the 
number of parameters and computations. Models for MRI can be created using 
a range of CNN architectures, including LeNet, AlexNet, VGGNet, GoogLeNet, 
ResNet, and ZFNet. 

16.5 RECURRENT NEURAL NETWORK (RNN) 

Because of their highly nonlinear dynamic mapping, RNNs (Figure 16.5) are help-
ful for several tasks, such as forecasting, control, optimization, and spatiotemporal 
pattern classifcation. RNNs are networks of various instances of an identical archi-
tecture, each passing information to the subsequent instance sequentially. 

RNNs’ hidden state, which keeps particular details about a sequence, is their 
primary and most important characteristic. Because the network needs to implement 
similar operations on every input behind the hidden layers to produce the output, 
every input utilizes the same parameters. Because RNNs have a memory that main-
tains records of their current state, they are suitable for time-series signal prediction, 
such as RNN. EEGs do not require knowledge of the artifacts of an EEG signal in 
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FIGURE 16.5 RNN. 

order to flter any signal. The primary objective is to assess the temporal order of 
data points using calculations from earlier sequences. 

16.6 DNN 

A neural network with a specifc degree of complexity is called a DNN, or Deep 
Net (see Figure 16.6). Deep Neural Network (DNN) learning approaches have been 
applied to complex problems across various felds, including image recognition, such 
as detecting cracks in pavements [18]. An improved method for improving the data 
fow rate of an event-related potential-based brain−computer interface combines two 
stimuli with a CNN. A DNN includes more layers than an ANN. 

FIGURE 16.6 DNN. 
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A DNN is a neural network that has many nodes in each of its many hidden layers. 
A neural network’s layers use a series of nonlinear transformations to process the 
input data, permitting the network to learn complex data representations. DL entails 
creating algorithms that can predict and learn from complex data. 

16.7 DEEP BELIEF NETWORK (DBN) 

DBNs are made to recognize and pick up patterns in massive databases automatically 
(see Figure 16.7). Imagine them as multilayered networks, where each layer builds 
upon the knowledge from the previous one to create a more thorough understanding 
of the data. Each DBN layer aims to separate distinct features from the incoming 
data. DL using probabilities that are unsupervised is known as DBN. There are two 
main stages in which DBNs function: pretraining and fne-tuning. Layer by layer, the 
network learns to represent the input data during the pretraining stage. The network 
learns the inputs’ probability distribution during the pretraining phase, which helps 
it understand the underlying data structure. Backpropagation is frequently used in 
this procedure, where the network’s effectiveness is evaluated on the job, and any 
failures are used to change the network’s parameters. DBNs employ a mix of math-
ematical techniques. 

The DBNs principles, merging probability theory with neural network architec-
tures. Restricted Boltzmann machines (RBMs) are based on probabilistic graphi-
cal models. In a DBN, RBMs are stacked on top of each other, where one RBM’s 
hidden layer serves as the subsequent RBM’s visible layer. Every RBM within the 
DBN operates as an energy-based model, retaining an energy value to characterize 

FIGURE 16.7 DBNs. 
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the relationship between its hidden and visible units. Lower energy corresponds to 
a higher probability of association between the units. The RBM constructs a cred-
ible representation of the original image by minimizing the energy value across the 
entire network. 

16.8 AUTOENCODER 

Autoencoders (AEs) are unique algorithms that can autonomously learn compact 
representations of input data without requiring labels (see Figure 16.8). An AE 
is a neural network developed to learn how to reconstruct images, text, and other 
data from their compressed representations. It is composed of two components: 
an encoder and a decoder. The encoder transforms the input data into a lower-
dimensional representation (referred to as “encoding”), and the decoder layer restores 
the original dimensions of the encoded data. AEs are especially helpful in noise 
reduction, feature extraction, compression, and similar tasks. Denoising AEs, sparse 
AEs, and contractive AEs are the three main categories of AE. 

AEs serve as a data augmentation method, where the restored images are used 
as augmented data, thereby creating additional training samples. The sparse AE 
type of autoencoder usually has more hidden units than input units, but only a 
few are permitted to be active at any given time. This characteristic is known as 
network sparsity. In the sparse AE design, there are more hidden units than input 
units, but only a certain number of hidden units can be active at any given time. 
An explicit regularization is incorporated into the objective function of a contrac-
tive AE, which forces the model to learn a function resilient to small changes in 
input values. 

16.9 PROBABILISTIC NEURAL NETWORK (PNN) 

PNNs address classifcation diffculties (see Figure 16.9). Using a Parzen window 
and a nonparametric function, the PNN approach predicts each class’ parent prob-
ability distribution function (PDF). Next, the PDF function determines the likeli-
hood of a fresh input data point. 

Furthermore, the new input data are allocated to the class having the greatest 
posterior likelihood via Bayes’ rule. This method is widely applied in supervised and 

FIGURE 16.8 Autoencoder. 
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FIGURE 16.9 Probabilistic neural networks. 

ML applications to estimate class-conditional densities. The widespread adoption 
of PNNs stemmed from the use of kernel functions for discriminant analysis and 
pattern recognition. The four layers of the PNN architecture are comprised of input, 
output, and summation layers. The input layer contains the characteristics of data 
points (or observations). The pattern layer computes the class-conditional PDF. The 
summation layer handles interclass patterns. 

16.10 ANN AND MULTILAYER PERCEPTRON (MLP) 

ANNs have driven many recent breakthroughs in AI, such as voice recognition, 
image recognition, and robotics (see Figure 16.10). For instance, ANNs can rec-
ognize hand-drawn digits in image recognition tasks. An ANN comprises three or 
more interconnected layers. The initial layer contains input neurons that forward 
data to the subsequent layers. These deeper layers then process the data and send the 
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FIGURE 16.10 Artifcial neural network. 

fnal output to the last output layer. A simplest feedforward neural network is a type 
of ANN and can have multiple or no hidden layers. However, a multilayer perceptron 
(MLP) specifcally includes at least one hidden layer. 

16.11 KNN 

The KNN approach (see Figure 16.11) is utilized for both classifcation and data 
regression tasks, however it is more commonly used for classifcation. Its premise is 
based on the assumption that similar data points are frequently found close together 
in the feature space. 

The KNN algorithm establishes the class or value of a given data point through 
a majority vote or an average of the numerical values of its K-nearest neighbors. 
Thanks to this fexible approach, the algorithm can adjust to different patterns in 
the data and can also predict things according to the regional confguration of the 
dataset. 

16.12 PREPROCESSING METHOD FOR PREPARING DATA 

The preprocessing stage is crucial for preparing experimental data for additional 
statistical analysis and improving its quality. Many MRI scan modalities from dif-
ferent sources can introduce various noises, such as motion artifacts, signal intensity 
variations, and spatial distortions, which need to be eliminated to guarantee reliable 
analysis. 
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FIGURE 16.11 The K-NN classifer. 

16.12.1 NOISE REDUCTION 

Noise reduction techniques improve the quality of images by removing unnecessary 
noise while retaining important diagnostic information. Numerous DL approaches 
have been developed to reduce noise in medical photos. CNN-based denoising 
algorithms eliminate noise from new input images by analyzing noise distributions 
in pairs of noisy and clean images. Prominent CNN structures for denoising are 
ResNet, U-Net, and DenseNet. GANs are another approach to denoising. 

16.12.2 IMAGE REGISTRATION 

Image registration involves aligning and matching multiple medical images of the 
same or different individuals to compare, evaluate, and integrate data. Image reg-
istration is a process of geometric transformation that aligns various images into a 
standard coordinate system. Linear registration and nonlinear registration are two 
types of registration algorithms. DL-based registration methods often involve train-
ing a neural network to predict deformation felds or transformation parameters for 
picture alignment purposes 

16.12.3 IMAGE SEGMENTATION 

CNN-based segmentation approaches leverage the neural network’s ability to 
withdraw hierarchical features from input data, resulting in the generation of 
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segmentation maps on a pixel-by-pixel basis. In traditional CNNs, the fully con-
nected layers are substituted with convolutional layers to facilitate dense pixel-
wise predictions [19]. 

16.12.4 CORRECTION 

Motion correction and slice timing correction are critical preprocessing techniques 
for addressing slice-dependent delay concerns. Slice timing correction (STC) is a 
preprocessing method that adjusts for slice-dependent delays. It is performed by 
changing each slice’s time series to bring all slices temporally into alignment with a 
reference time point. Most fMRI investigations capture slices individually, resulting 
in timing differences of several seconds between data from various slices. Two basic 
methodologies for STC have been developed: data shifting and model shifting. Data 
shifting is the most widely used technique, in which recorded points are corrected 
to refect their proper offset from the stimulation time. Model shifting is a postpro-
cessing technique. The hemodynamic response function’s (HRF) expected location 
differs when the model is shifted. The FEAT tool of the FMRIB Software Library 
(FSL) can also be used to correct slice timing. Head motion is the primary source 
of error in fMRI studies, and various strategies have been developed to address this 
issue. Motion correction can also be done using the MCFLIRT module from the FSL 
[20, 21]. 

16.12.5 STRIPPING/TRIMMING 

Skull removal or brain extraction is an essential preprocessing step for removing 
nonbrain tissues from brain MRI data. Automated skull stripping is a useful tactic 
for improving data analysis speed and accuracy. One popular tool from the FMRIB 
Applications Library is the Neurological Extraction Tool. 

16.12.6 NORMALIZATION (NM) 

In image processing, normalization is adjusting the range of pixel intensity values 
in an image. This is often done to ensure that images are consistent in brightness 
and contrast, facilitating better comparison and analysis. Through data standard-
ization, normalization can enhance the effciency of different image process-
ing algorithms. Intensity normalization is crucial for image analysis involving 
multiple subjects or time points to ensure comparability across images. White 
Stripe normalization may be more effective and provide better interpretability 
than whole-brain normalization for subsequent lesion segmentation algorithms 
and analyses. 

Intensity normalization is a commonly used technique to reduce data variance, 
with methods ranging from uniformity transformation to histogram equalization. 
Spatial normalization (SN) is a transformation process used to account for these 
differences by aligning a set of brain features to those derived from a standard brain 
template. 
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Spatial normalization is one stage in image processing, precisely an image 
registration technique. Spatial normalization attempts to distort brain scans so 
that a particular location in one is representative of the various sizes and shapes 
of human brains. 

One method of data normalization that helps with outliers is called Z-score 
normalization. Z-score normalization entails modifying each value in a dataset to 
make the standard deviation equal to one and the overall mean equal to zero. This is 
accomplished by deducting the mean of the feature from each value and dividing the 
result by the standard deviation. 

Smoothing flters, also known as blurring flters, are a diverse set of image fl-
ters frequently used in image processing. They serve the specifc functions of noise 
reduction and elimination of small details. In image processing, fltering is instru-
mental in tasks such as smoothing, sharpening, and edge enhancement, thereby 
enhancing the overall quality and contrast of the image. Spatial fltering techniques 
are applied directly to an image’s pixels. A mask is typically defned with a specifc 
size and a central pixel. 

16.12.7 SMOOTHING 

Minimizing noise within an image is called smoothing. Image smoothing is a crucial 
technique in image enhancement, used to eliminate noise from images. In neuro-
imaging, spatial smoothing is a preprocessing step that lowers noise and artifacts 
in the data. However, selecting the right smoothing kernel size can be diffcult, as 
it can lead to unintended changes in the fnished images and functional connectiv-
ity networks. Spatial smoothing aims to address functional anatomical variability 
that spatial normalization (“warping”) has not corrected, thereby improving the sig-
nal to noise ratio (SNR). Smoothing flters are utilized to reduce noise and perform 
blurring operations. A spatially stationary Gaussian flter is used to perform spatial 
smoothing; the user is required to specify the kernel width in millimeters as the 
“full width half maximum” (FWHM) [20–22]. The form of this Gaussian kernel 
resembles a typical distribution curve [23]. 

16.12.8 EVALUATION METRICS 

This section presents various evaluation metrics. The true positive (TP) rate was 
impressive, indicating that the model effectively identifed individuals with the 
disorders. The low false positive (FP) rate further validated the model’s specifc-
ity, reducing the likelihood of misclassifying healthy individuals as affected. The 
model’s accuracy in identifying nonaffected individuals was validated by the high 
true negative (TN) rate. Even with these encouraging results, there were some cases 
where the model could not identify the disorder, according to the low false negative 
(FN) rate. This underscores the need for further refnement of the neural network 
architecture by including more diverse training data or adjusting hyperparameters to 
minimize false negatives and improve the model’s overall diagnostic accuracy. The 
discussion of these results emphasizes the potential and current limitations of using 
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advanced neural architectures to accurately and reliably detect neurological disor-
ders. Here is some standard performance evaluation metrics used in DL: 

Accuracy: The proportion of cases that were accurately predicted to all 
instances. 

TP + TN
Accuracy = (16.1) 

TP + TN + FP + FN 

Suitable for balanced datasets where the number of instances in each class 
is roughly equal. 

Precision: the proportion of all anticipated positives to successfully predicted 
positive observations. 

TP
Precision = (16.2) 

TP + FP 

F-score: The precision and recall weighted average. 

Recall Precision* F S− core = (16.3) 
Recall + Precision 

Useful for imbalanced datasets where you need to fnd a balance between 
precision and recall. 

Specifcity: Specifcity refers to the accuracy with which negative items are 
detected. 

TN
Specificity = (16.4) 

TN + FN 

Positive entries accurately identifed in sensitivity. 

16.13 CONCLUSION 

Early disease diagnosis remains an active area of research, with many research-
ers striving to achieve the highest accuracy in detection and diagnosis. DL models 
have the potential to contribute to the medical feld. DL algorithms within different 
image data have proven effective in diagnosing different diseases. Neurological dis-
order detection using DL algorithms is discussed in this chapter. Other neurological 
diseases have been also discussed in this chapter, like schizophrenia, PD, and AD. 
The chapter examined which DL algorithm can detect neurological disorders more 
effectively. The chapter is likely to be valuable to researchers working on artifcial 
intelligence (AI) and medical applications in general, as well as ML/DL-based brain 
illness diagnosis in particular. A detailed discussion of several performance indica-
tors was held to assess the algorithm’s effcacy. So, the DL algorithm is a very effec-
tive method for diagnosing diseases in the early stages to save human life. 
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17 From Data to Diagnosis 
Supervised Learning’s 
Impact on Neurodisorder 
Detection, with a Focus on 
Autism Spectrum Disorder 

S. Srividhya and S. R. Lavanya 

17.1 INTRODUCTION 

In the feld of machine learning, supervised learning is an essential approach that 
has a signifcant impact on the identifcation and diagnosis of neurological illnesses. 
This method uses labeled datasets to train algorithms so they can classify or predict 
new data never seen before. Supervised learning models play a crucial role in the 
identifcation of patterns and anomalies linked to neurological illnesses, including 
multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease [1] when it comes to 
neurodisorder detection. In supervised learning, a machine learning model is trained 
on a dataset in which every instance is associated with a label or result. Through 
learning from these examples, the model is able to effectively predict or classify 
fresh data. In neurodisorder detection, this approach is crucial since precise progno-
ses can have a big impact on patient care and therapy. 

Improving the management of neurological illnesses and improving patient out-
comes need early identifcation and detection of neurodisorders [2]. Multiple sclerosis, 
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis are among 
the neurodisorders that frequently develop slowly, with early symptoms that may be 
mild or readily mistaken for other conditions. Early detection is important because it 
can intervene before the disease progresses to a more advanced level, which can lead 
to opportunities for more successful treatment, delay the progression of the disease, 
and improve the overall quality of life for patients. There are more possibilities for 
controlling a neurodisorder the sooner it is discovered. For example, early diagnosis 
of Alzheimer’s disease permits the use of drugs and nonpharmacological therapies 
intended to slow cognitive loss and maintain functional abilities. Early intervention 
might potentially prolong the time that people can remain independent and engage in 
everyday activities by slowing the progression of symptoms. Similar to this, early detec-
tion of Parkinson’s disease [3] allows for the development of therapy regimens that can 
postpone the onset of motor symptoms and improve the effcacy of medications used to 
manage stiffness, tremors, and other motor defcits. 
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Early identifcation is critical in multiple sclerosis since it can have a substan-
tial impact on the disease’s long-term trajectory. Early implementation of disease-
modifying medicines has been demonstrated to improve long-term results by 
lowering the frequency and severity of relapses and delaying the accrual of impair-
ment. Early diagnosis also makes it possible to incorporate lifestyle changes and 
rehabilitation techniques that can enhance patients’ quality of life and help man-
age symptoms more successfully. Early diagnosis has advantages that go beyond 
simply treating symptoms right away. By providing knowledge and control over 
the course of the illness, it enables patients and their families to plan ahead and 
get proactive support. Early diagnosis allows families to plan ahead and make 
educated decisions regarding caregiving techniques, treatment alternatives, and 
other matters. This can provide a clearer approach for controlling the disease and 
lessen some of the psychological diffculties associated with neurodisorders, such 
as anxiety and ambiguity. Personalized medicine also appears to beneft from early 
detection. Genetic studies, biomarkers, and neuroimaging advances are making 
it possible to diagnose neurodisorders even before substantial clinical symptoms 
appear. The effcacy of treatment can be greatly increased by creating individual-
ized treatment plans that are specifc to the patient and the disorder’s features. 
Genetic screening, for example, can identify those who are more likely to develop 
specifc neurodisorders, enabling early monitoring and the beginning of treatment 
or preventive actions. 

Early diagnosis can also have a big impact on research and public health. 
Early neurodisorder identifcation can help to improve our understanding of the 
disease’s processes and course, which is essential for creating novel treatments 
and interventions. Early-stage data may expedite the search for better treat-
ments and cures by enhancing clinical trial design and assisting in the assessment 
of novel treatments’ effcacy. It can also help with planning and resource allocation 
for healthcare services so that they better suit the needs of an aging population. 

17.2 SUPERVISED LEARNING ALGORITHMS 

In order to predict outcomes or categorize input data, supervised learning is a 
fundamental machine learning technique where the model is trained on labeled 
data. Creating a prediction model that can make precise judgments or projections 
based on fresh, unobserved data is the aim of supervised learning [4]. In order 
to enable the model to understand the relationship between inputs and outputs, 
this method requires a dataset in which each training sample is matched with an 
output label. 

17.2.1 SUPPORT VECTOR MACHINES 

A supervised learning approach called an SVM is used to determine the optimal 
border or hyperplane between various classes in a dataset. Regression activities can 
also be performed with it. To provide the best possible separation, the primary objec-
tive of SVM [5] is to design a decision border that optimizes the margin between 
various classes. A hyperplane is a decision boundary used in support of SVMs that 
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divides classes. To put it simply, this is a line in two dimensions. It is referred to as 
a hyperplane in higher dimensions and as a plane in three dimensions. The SVM 
method looks for the hyperplane that splits the data into two classes as effciently 
as possible. The distance between the nearest data points from each class and the 
hyperplane is known as the margin. This margin should be maximized by SVM. 
Greater separation between the hyperplane and the data points, indicated by a bigger 
margin, typically results in improved generalization on fresh data. The data points 
that are closest to the hyperplane are known as support vectors. These points are 
essential for determining the hyperplane’s orientation and position. They serve as the 
hyperplane’s “support” and have a direct impact on where it is placed. 

The SVM steps are as follows 

Data preparation: Gather and prepare your information. This entails dividing 
the dataset into training and testing sets, scaling features, and handling 
missing values. 

Locate the ideal hyperplane: SVMs look for the hyperplane that maximizes 
the difference between two classes. This is simple with a dataset that is 
linearly separable. More sophisticated techniques are applied to nonlinear 
datasets. 

Use kernels for nonlinear data: SVMs employ a method known as the “kernel 
trick” to convert nonlinear data into a higher-dimensional space that has a 
linear separator. This method is useful when your data cannot be separated 
into classes using a straight line. When the data can be separated linearly, 
the linear kernel is utilized. 
• Polynomial kernel: Uses polynomial functions to map data into higher 

dimensions. 
• Radial basis function (RBF) kernel: This useful tool for more intricate 

boundaries maps data into a higher-dimensional space based on the 
separation between points. 

Train the model: Fit the SVM model to your training set of data to train the 
model. The best hyperplane will be found by the model, which will then 
learn to divide the classes. 

Make predictions: Based on fresh, untainted data, create predictions using the 
trained model. 
• Effective in high dimensions: SVMs are effective for datasets with a 

large number of features. 
• Versatile: Through the use of different kernels, SVMs can handle both 

linear and nonlinear data. 
• Robust to overftting: SVMs can be less prone to overftting, especially 

in high-dimensional spaces. 

17.2.2 K-NEAREST NEIGHBOR (KNN) 

KNN, a supervised learning technique, is used for classifcation and regression. 
KNN [6] estimates the distance between each training point and the test data to 
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predict the correct class for the test data. The K points closely related to test data 
should be selected by the following phase. When using the KNN approach, the class 
with the highest possibility is chosen after calculating the likelihood that the test 
data will fall into each “K” training data class. If regression is considered, the value 
is established by the mean of the “K” chosen training points. 

The KNN operation may be explained using the following approach: 

Step 1: Choose the neighbor with the K-number. 
Step 2: The K-number of neighbors’ Euclidean distance should be 

calculated. 
Step 3: Based on the estimated Euclidean distance, use the K-nearest neighbors. 
Step 4: Count the number of data points in each class among these K-neighbors. 
Step 5: Place the new data points in the class with the highest neighbor count. 
Step 6: The proposed model is designed. 

17.2.3 DECISION TREE 

A decision-support tool is the decision tree (DT), which utilizes a model of deci-
sions and their probable outputs as a tree. It considers random events’ useful-
ness, resource costs, and outcomes. A DT is a way to show an algorithm solely 
using conditional control statements. In statistics, DTs are used as a predictive 
modeling tool. A DT [7] is used to proceed from observations about a feature 
to judgments about the feature’s intended value. Classifcation trees are tree 
models with a defned range of possible values for the objective variable. The 
branches are the classes for the feature combinations that result in those class 
names, while the leaves represent the class labels. A DT or classifcation tree fre-
quently labels each interior node (nonleaf) with an input attribute. The title of a 
class or a probability distribution across the categories attached to each tree leaf 
indicates that the tree has classed the dataset into either a specifc type or a spe-
cifc probability distribution. This shows that the tree has correctly categorized 
the dataset. 

On both discrete and continuous data, C4.5 is frequently used as a DT. It uses 
entropy to create the DT from a large training dataset. If S = (s1,..si ) is followed by 
each sample in the training set of categorized samples, si  has a p-dimensional vector 
in it (x …x ), which relates to the sample’s class and its property values si. Subsets 1,i , p,i 

of data characteristics that belong to one class or another are separated into subsets. 
The highest entropy leaves are chosen for the split’s conclusion because they have the 
most information or entropy. 

The following regulations are included in C4.5: 

• The tree becomes a leaf and is tagged with the class and retrieved if all the 
cases are present in a single class. 

• Compute the critical information from a test performed on every attribute 
during the calculation of information gain. 

• Get the feature to group based on a choice. 



 

 
 

 
 
 
 

 
  

 

 

  

261 From Data to Diagnosis 

17.3 AUTISM SPECTRUM DISORDER (ASD) 

ASD is a complex neurodevelopmental condition characterized by a range of symptoms 
and challenges affecting social interaction, communication, and behavior. This section is 
an overview of ASD [8] and the diagnostic challenges associated with it. ASD is a devel-
opmental disorder that affects how a person thinks, interacts with others, and experiences 
the world. It encompasses a broad range of symptoms and severity levels, hence the term 
“spectrum.” Common characteristics include diffculties with social communication, 
repetitive behaviors or interests, and a range of sensory sensitivities. Individuals may also 
have unique strengths, such as attention to detail or exceptional skills in specifc areas. 

The diagnostic challenges are as follows 

Variability in symptoms: The wide range of symptoms and severity can make 
it diffcult to identify and diagnose ASD consistently. Individuals may pres-
ent with different combinations of symptoms, making standardization of 
diagnosis challenging. 

Early detection: Early diagnosis is crucial for effective intervention, but 
detecting ASD in very young children can be challenging. Symptoms may 
not become fully apparent until later in development, especially in cases 
where symptoms are less severe. 

Diagnostic criteria: The diagnostic criteria for ASD outlined in Diagnostic 
and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), focus 
on specifc behaviors and symptoms. However, these criteria may not cap-
ture the full range of experiences or variations in presentation, leading to 
potential misdiagnosis or underdiagnosis. 

Overlapping conditions: ASD shares symptoms with other developmental dis-
orders, such as attention-defcit/hyperactivity disorder (ADHD), anxiety dis-
orders, and language disorders. This overlap can complicate the diagnostic 
process and lead to challenges in distinguishing ASD from other conditions. 

Cultural and linguistic differences: Cultural and linguistic factors can affect 
the presentation and perception of ASD symptoms. Differences in commu-
nication styles and social norms may infuence how symptoms are observed 
and reported, impacting the diagnosis. 

Resource availability: Access to qualifed professionals and diagnostic resources 
can vary signifcantly. In some areas, there may be limited availability of spe-
cialists trained to diagnose ASD, which can delay or impede accurate diagnosis. 

Gender differences: ASD is more commonly diagnosed in males than females, 
which may partly be due to differences in symptom presentation. Females 
with ASD may exhibit less overt symptoms or present with different char-
acteristics, leading to underdiagnosis or misdiagnosis. 

17.4 IMPLEMENTATION OF SUPERVISED LEARNING 
ALGORITHMS FOR AUTISM SPECTRUM DISORDER 

The methodology outlined in this chapter is structured into three distinct phases. 
The initial phase focuses on addressing missing values [9] within the datasets. The 
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second phase is dedicated to the process of feature extraction [10], and the fnal phase 
involves classifcation. For this analysis, datasets on ASD are utilized [11], sourced 
from the University of California, Irvine (UCI) Machine Learning Repository. 
The datasets encompass different age groups: children, adolescents, and adults. 
Specifcally, the child dataset includes 21 attributes and 292 records in which 141 
individuals belong to the positive class, i.e., with ASD, and 151 individuals belong 
to the negative class, i.e., without ASD; the adolescent dataset contains 21 attributes 
and 104 records, out of which 63 are positive cases and 41 are negative cases; and the 
adult dataset comprises 21 attributes and 704 records. Out of 704 records, 189 fall 
under the positive category and 515 fall under the negative category. Each of these 
datasets contains missing values, which are handled in the frst phase of the method-
ology. Figure 17.1 depicts the proposed architecture. 

The frst phase addresses the issue of missing values. In this phase, instances with 
missing data are excluded, resulting in a dataset with no missing values. The second 
phase focuses on feature extraction, employing factor analysis as the technique of 
choice. Factor analysis is a statistical approach used for dimensionality reduction. 
It aims to explore the underlying structures within a dataset by identifying patterns 
among observed variables. The primary objective of factor analysis is to reveal latent 
factors that account for the correlations observed among the variables. 

Factor analysis [12] involves several methodical steps to simplify and interpret 
datasets. The process begins with gathering the dataset and identifying the initial 
factors along with their loadings on each observed variable. Next, Kaiser’s criterion 
is applied − retaining factors with eigenvalues greater than 1, along with examining 
the scree plot or considering theoretical implications − to determine which factors 
to retain. The analysis then employs a rotation method, such as Varimax, to enhance 
the interpretability of the factors. This rotation aims to achieve a simpler factor struc-
ture, with higher loadings concentrated on a fewer number of factors. Following this, 

FIGURE 17.1 Proposed architecture for the chapter’s methodology. 
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the factors are interpreted based on the pattern of loadings, with variables showing 
high loadings on a particular factor, indicating a strong relationship with that factor. 
Finally, the identifed factors are used as a reduced set of dimensions that capture the 
variance in the original dataset, with factor scores computed to represent individual 
observations on these dimensions. Through these steps, factor analysis condenses 
the dataset into a manageable number of features for the classifcation process. 

The third phase of the proposed methodology involves the classifcation process. 
In this phase, the features extracted during the second phase are fed into various 
classifcation algorithms for prediction. Specifcally, DT, SVM, and KNN algo-
rithms are utilized for the analysis. To evaluate the effectiveness of the classifca-
tion approach [13], performance metrics such as recall, precision, and accuracy are 
employed. Figure 17.2 depicts the overall framework. 

FIGURE 17.2 Overall framework of the classifcation process. 
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FIGURE 17.3 Performance of the child dataset. 

The classifers are evaluated using bar charts and heat maps. A heat map is a 
powerful visualization tool for comparing the performance of classifers across mul-
tiple metrics and datasets. It provides a clear and intuitive way to understand how 
different classifers perform in various scenarios. A bar chart is a straightforward 
and effective visualization tool for comparing the performance of classifers across 
different metrics and datasets. 

For the Child dataset as shown in Figure 17.3, the SVM stands out as the top per-
former across all metrics. It leads in accuracy (94.34), precision (92.23), and recall 
(93.01), suggesting it is the most effective classifer for this particular dataset. The 
KNN algorithm follows closely behind, demonstrating strong performance but fall-
ing slightly short of the SVM’s scores. The DT, while still effective, consistently 
ranks lower in all metrics, indicating it might be less suitable compared to SVM and 
KNN for this dataset. 

In the Adolescent dataset, SVM again shows superior performance, particularly 
in precision (92.34) and recall (90.01). The results are shown in Figure 17.4. KNN 
performs competitively but does not quite reach the levels achieved by SVM, par-
ticularly in recall. The DT is less effective across all metrics, with the lowest scores 
in accuracy, precision, and recall. This suggests that SVM and KNN are better suited 
for handling the Adolescent dataset. 

For the Adult dataset, SVM excels in all metrics, achieving the highest values 
in accuracy (98.34), precision (98.01), and recall (98.67). KNN performs slightly 
behind SVM, showing high scores in accuracy, precision, and recall. The DT lags 
behind SVM and KNN. This indicates that SVM is the most effective classifer 
for the Adult dataset, with KNN also performing exceptionally well, as shown in 
Figure 17.5. 

Overall, SVM generally outperforms both KNN and DT in most scenarios, par-
ticularly excelling in precision and recall. KNN shows competitive results, espe-
cially in datasets with moderate to high performance, while the DT, despite being a 
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FIGURE 17.4 Performance of the adolescent dataset. 

robust and interpretable model, often underperforms relative to the other classifers 
in these datasets. 

Overall, SVM outperforms DT and KNN in terms of accuracy, precision, and 
recall across all datasets. It achieves the highest accuracy with scores of 94.34% for 
the Child dataset, 89.23% for the Adolescent dataset, and 98.34% for the Adult data-
set. In precision, SVM again leads with 92.23% for Child, 92.34% for Adolescent, 
and 98.01% for Adult. Additionally, SVM excels in recall, recording 93.01% for 
Child, 90.01% for Adolescent, and 98.67% for Adult. While KNN shows strong 
recall performance, especially in the Adult dataset where it matches SVM, DT falls 
short, particularly in precision for the Adolescent dataset, as shown in Figure 17.6. 

FIGURE 17.5 Performance of the adult dataset. 
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FIGURE 17.6 Performance of classifers in metrics. 

In the Child dataset, SVM leads in accuracy, precision, and recall, surpassing 
both DT and KNN. For the Adolescent dataset, SVM continues to dominate in all 
three metrics − accuracy, precision, and recall − though KNN shows a notable gap 
in precision compared to SVM. In the Adult dataset, SVM delivers the highest scores 
across all metrics, including accuracy, precision, and recall. Here, DT outperforms 
KNN, especially in recall, demonstrating a stronger performance relative to KNN. 

For the DT classifer, its notable strength lies in achieving better recall compared 
to KNN in the Adult dataset. However, it generally underperforms relative to SVM 
across all metrics and datasets, especially in the Adolescent and Child datasets. The 
SVM classifer, on the other hand, consistently excels in accuracy, precision, and 
recall across all datasets, showing no weaknesses compared to the other classifers. 
KNN demonstrates solid recall performance, particularly in the Adult dataset, but 
tends to fall short in accuracy and precision when compared to SVM, and occasion-
ally even lags behind DT in the Child and Adolescent datasets. 

Overall, the SVM classifer demonstrates superior performance in all metrics 
across the datasets, making it the preferred model for this particular set of data. The 
DT model shows more variability but performs well in specifc cases, such as the 
Adult dataset for recall. KNN, while showing decent recall, lags in accuracy and 
precision compared to SVM and DT. 

17.5 CONCLUSION 

The importance of early detection and diagnosis in neurodisorders cannot be over-
stated. It is a critical factor in improving patient outcomes, managing symptoms 
more effectively, and enhancing the overall quality of life. Early diagnosis not only 
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provides the opportunity for timely intervention but also empowers patients and fam-
ilies with the information and control necessary for proactive management. It plays 
a crucial role in the advancement of personalized medicine and public health, con-
tributing to a deeper understanding of neurological diseases and the development of 
more effective treatments. As research and technology continue to evolve, the ability 
to detect and diagnose neurodisorders at earlier stages will remain a cornerstone of 
effective healthcare and patient care. Supervised learning signifcantly enhances the 
diagnosis and management of neurodisorders by leveraging labeled datasets to train 
algorithms for precise pattern recognition and anomaly detection. This approach 
is crucial for early and accurate identifcation of conditions such as Alzheimer’s, 
Parkinson’s, and multiple sclerosis, where timely intervention can profoundly impact 
disease progression and patient quality of life. Techniques like SVM, KNN, and DT 
offer valuable tools for analyzing complex neurological data and improving diag-
nostic accuracy. Despite challenges, particularly in diagnosing ASD, advancements 
in machine learning, including personalized medicine and the integration of genetic 
and neuroimaging data, promise to further refne and enhance early detection and 
treatment strategies, ultimately leading to better patient outcomes and a deeper 
understanding of neurodisorders. The analysis reveals that SVM consistently out-
performs both KNN and DT across all datasets − children, adolescents, and adults − 
in terms of accuracy, precision, and recall, demonstrating its superiority as a classi-
fer for ASD detection. 
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18 Parkinson’s Disease 
Detection from Drawing 
Images Using Deep 
Pretrained Models 
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18.1 INTRODUCTION 

Parkinson’s disease (PD) is an increasingly common neurological illness that impairs 
both motor and nonmotor (nonmovement) abilities, hence compromising a person’s 
general quality of life [1–3]. PD is the second-most predominant neurological condi-
tion. It is brought on by a breakdown of dopamine-producing neurons in the brain’s 
substantia nigra [4, 5]. Several other reasons, viz. genetic factors, environmental 
factors, biological factors, pathological factors, and complex interactions, also con-
tribute to the development of Parkinsonian disorder. Although there is no single 
test to detect PD, there are several techniques that can assist in identifying the ill-
ness and enhance sufferers’ quality of life. The following techniques are employed: 
observation, tracking, dopamine transporter imaging (DaTscan), computed tomog-
raphy (CT) scan, magnetic resonance imaging (MRI), reaction to medicine, physi-
cal and neurological tests, and clinical diagnostic criteria. PD patients may have 
bradykinesia, involuntary shaking, rhythmic movements, problems with balance 
and stability, and a temporary loss of the ability to begin or continue walking (gait 
interruption). Conversely, PD’s nonmotor symptoms include changes in sensory per-
ception, behavioral abnormalities, and cognitive function defcits. The number of 
people suffering from PD is increasing gradually and exceeding 10 million world-
wide [6–8]. Therefore, the effcacy of novel medications and the quality of medical 
care for PD patients depend greatly on early diagnosis [9]. To evaluate the fne motor 
control and coordination in clinical assessments, spiral shape images are drawn by 
patients on paper to get valuable insights, and this process is also used as a diagnostic 
tool for assessing PD. These spiral-shaped images differ between healthy individu-
als and those who suffer from PD. To ensure that the PD patients receive prompt 
care, it is necessary to have professionals evaluate the drawings of both groups as 
soon as possible [10–12]. Deep learning (DL) is widely used for diagnosing diseases 
and achieves high-performance results by utilizing voluminous medical data and 
complex computational models. By using the DL models, the classifcation of spiral 
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shape images drawn by the individuals having PD symptoms and those who are 
healthy becomes quite easy and assists healthcare professionals and experts in the 
early diagnosis of PD disorder among individuals [13–17]. The present study com-
pares the performance measures of the six pretrained DL models − VGG16, VGG19, 
DenseNet121, DenseNet169, InceptionNetV3, and Xception − in terms of their abil-
ity to classify both healthy groups and PD patients. 

The present work has made the following principal contributions: 

i. The proposed study reduces the likelihood of misdiagnosis and helps in the 
early identifcation of Parkinson’s illness thanks to DL’s processing power. 

ii. The work offers a comprehensive performance analysis of these various 
deep pretrained models on PD data. 

iii. The study assists medical practitioners in early PD diagnosis using the best-
performed model. 

The present work is organized into six sections, beginning from the ear-
lier research in Section 18.2 followed by material and methods in Section 18.3. 
Additionally, Section 18.4 presents the experiments and fndings, and Sections 18.5 
and 18.6 explain the current work’s discussion and conclusion, respectively. 

18.2 LITERATURE REVIEW 

This section discusses several studies to detect Parkinsonian disorder using various 
state-of-the-art methods. Researchers from different parts of the world used dif-
ferent methods for diagnosing PD, including MRI scans, speech and gait signals, 
electroencephalogram (EEG) and electromyography (EMG) signals, and single-
photon emission computerized tomography (SPECT) scans. In addition, researchers 
have also proposed various methods of diagnosing PD with the help of handwritten 
images, especially spiral drawings. Several aspects, including kinematic, geometri-
cal, entropic, energetic, temporal, spectral, and nonlinear features, were extracted 
from the raw datasets using graphical tablets, which were used to analyze hand-
writing samples. To ascertain the state of PD, several preprocessing, feature selec-
tion, and supervised learning strategies have been used in conjunction with machine 
and DL techniques. [18] worked to diagnose PD early by estimating the changes in 
handwriting. The dataset about handwritten spirals drawn by the PD patients has 
been utilized and kinematic features have been extracted from the same. They used 
XGBoost, AdaBoost, random forest (RF), and support vector machine (SVM) as 
their four classifers. With the mutual information gain feature selection approach 
used, the AdaBoost algorithm fared better than the other algorithms, achieving 
scores of 96.02%, 91.93%, 100.00%, 100.00%, and 95.79% for sensitivity, accuracy, 
and precision, respectively. In another study [19], authors used an equal amount of 
data about spiral and sinusoidal handwritten drawings of PD patients and normal 
individuals for identifying one of the cardinal signs of PD, i.e., tremor detection. 

Analogously, [20] worked on digitized spiral drawings and extracted in-air and 
on-surface kinematic features using mathematical models. Four machine learning 
(ML) algorithms, random forest, K-nearest neighbor (KNN), SVM, and logistic 
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regression, were used to identify PD. Using random forest and logistic regression 
among others, 91.6% accuracy was obtained. An attempt was made by [21] to diag-
nose PD at an early stage by differentiating between PD patients and healthy con-
trols using convolutional neural network (CNN) architecture. A total of 87 subjects 
comprising 58 PD patients and 29 healthy controls of the same age were engaged 
to draw wire cubes and spiral pentagons, and it was concluded that these two tests 
have almost the same ability to differentiate PD patients and healthy controls. Two 
distinct hand-drawn data patterns, spiral, and wave, have been used by [22] for early 
detection of PD wherein six pretrained models, viz. VGG16, VGG19, ResNet18, 
ResNet50, ResNet101, and Vit were used. Each of these models was assessed based 
on three performance criteria: accuracy, precision, and F1 score. Together, the 
VGG19 model and the recommended model produced the best average accuracy of 
96.67% out of all of them. In another study on PD using handwriting-balanced data 
from 42 subjects, [23] proposed an automatic classifcation system by applying CNN 
and CNN−bidirectional long short-term memory (CNN-BLSTM) for PD detection. 
The CNN-BLSTM model, which was trained utilizing jittering and synthetic data 
augmentation approaches, had the best results, with an accuracy of 97.62%. It has 
been proposed to stop the progression of PD by developing an early automated diag-
nosis technique for the treatment of symptoms using several handwriting datasets 
and deep transfer learning-based algorithms [24]. When paired with CNN fne-tuned 
architectures, the usage of data-augmented pictures yields the greatest results, with 
99.22% accuracy. A novel method has been proposed by [25] based on the segmenta-
tion of online handwritten text into lines. PD early identifcation has been achieved 
by using the temporal and spectral characteristics of Arabic online handwriting. 
Three classifers that are KNN, SVM, and decision tree (DT) as well as a stratifed 
nested ten-cross-validation were used for the experiments. Of the three classifers, 
DT provided the greatest accuracy, at 92.86%. In the same direction, [26] worked 
on two publicly accessible datasets including PaHaW and NewHandPD of sequence-
based dynamic handwriting for the early diagnosis of PD using the combination of 
one-dimensional (1D) convolutions and bidirectional-gated recurrent unit (Bi-GRU) 
layers for the classifcation purpose. The NewHandPD handwriting dataset has been 
used for the accurate detection of PD by utilizing transfer learning models such as 
ResNet50, VGG19, and InceptionV3 along with the optimization algorithm, viz. the 
genetic algorithm, by [27]. The proposed model provided an accuracy of 95.29%, 
recall of 0.86, precision of 0.98, and area under the curve (AUC) of 0.90. 

One of the important symptoms of PD is gait abnormality, i.e., unusual walking 
patterns, and [28] have worked to build a model for analyzing gait data for the detec-
tion of PD. For this, a 1D CNN has been proposed and worked on 166 subjects (93 
PD patients and 73 normal). The detection of abnormalities in gait has been obtained 
with an accuracy of 98.7%, and the prediction of a subject’s Unifed Parkinson’s 
Disease Rating Scale (UPDRS) severity has been achieved with an accuracy of 
85.3%. The voice measurements dataset used is available to the public via UCI. The 
static and dynamic features of the speech-related dataset of 45 subjects about PD 
have been studied by [29] and bi-directional LSTM has been used for capturing 
time-series dynamic features. The results of the study were found have been better 
than those of previous similar works of ML using static features. As PD progresses 
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due to the defciency of dopamine, [30] used MRI images that capture the structural 
changes in the brain. The images of patients suffering from PD and normal subjects 
have been trained by using AlexNet DL architecture and tested for evaluating its 
performance. [31] used MRI images for the classifcation of healthy individuals and 
patients suffering from PD using transfer learning techniques and data augmenta-
tion. The original data were increased by generative adversarial network (GAN), and 
pretrained Alex-Net has been utilized for the classifcation purpose. 

18.3 MATERIALS AND METHODS 

The study’s dataset, the DL pretrained models that were utilized for analysis, and the 
suggested research methods are all described in this section. 

18.3.1 DATASET DESCRIPTION 

The dataset that this research used includes 204 spiral and wave drawing pictures 
that were obtained from [12], which contains a total of 204 spiral and wave drawing 
images. These images are evenly divided between patients and healthy/normal indi-
viduals diagnosed with PD, with each class containing 102 images. The drawings 
are used to evaluate the motor symptoms associated with PD, as the disorder often 
affects fne motor skills. For this study, the images from the dataset were resized to 
224 × 224 pixels to meet the input requirements of the DL models. The dataset was 
split into training and testing sets using an 80:20 ratio (80% of the images used for 
training and 20% for evaluating model performance). The distribution chart of data 
is shown in Figure 18.1, and sample images of spiral and wave drawing are shown 
in Figure 18.2. 

18.3.2 DEEP LEARNING PRETRAINED MODELS 

In this work, drawing images of people with PD and healthy people are distinguished 
from each other using six pretrained DL models: VGG16, VGG19, DenseNet121, 
DenseNet169, InceptionNetV3, and Xception. The VGG architecture serves as the foun-
dation for both VGG16 and VGG19, with VGG19 having a deeper network structure. 
Both are suited for transfer learning since they make use of tiny 3 × 3 convolutional fl-
ters and were pretrained on the ImageNet dataset. DenseNet121 and DenseNet169 have 
designs with dense connections that improve gradient fow and feature reuse. Their 121 
and 169 layers, respectively, enable them to record intricate patterns that are essential 
for recognizing motor impairments associated with PD in drawings. InceptionNetV3 
boosts computing performance by utilizing techniques like label smoothing and fac-
torized convolutions. Xception improves on the Inception architecture and boosts its 
capacity to extract fne-grained data by utilizing depthwise separable convolutions. All 
models use their pretrained data from ImageNet to enhance the classifcation of draw-
ings to detect PD. By examining several models, the study seeks to determine which 
architecture is most suitable for this task. 

VGG16 model consists of 16 learnable weight layers, including three fully con-
nected layers and 13 convolutional layers. Small 3 × 3 flters are used in each 
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FIGURE 18.1 Data distribution plot. 

FIGURE 18.2 Sample images from the dataset. 
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convolutional layer, and they are stacked to increase the network’s depth while 
catching intricate characteristics. The architecture is symmetrical, with many 
convolutional layers followed by spatial dimension-reducing max-pooling lay-
ers. Predictions are made using the fnal three layers, which are fully integrated. 
With around 138 million parameters, VGG16 is a deep model with a lot of param-
eters. The VGG19 structure, which has 19 layers with learnable weights, is an 
expansion of the VGG16 architecture. It has three fully connected layers and 16 
convolutional layers; in comparison to VGG16, it has more convolutional layers, 
which enables more intricate feature extraction. Similar to VGG16, VGG19 makes 
use of multiple max-pooling layers and 3 × 3 convolutional flters. Classifcation 
uses the completely connected layers at the end. Because VGG19 has more lay-
ers than VGG16, it has somewhat more parameters, that is, about 144 million. 
DenseNet121 is comprised of 121 layers, which are arranged into dense blocks 
where each layer gets input from all layers that came before it in that chunk. The 
pattern of dense connectedness encourages feature reuse, which leads to a large 
reduction of parameters. Dense blocks make up the architecture, which is followed 
by transition layers that manage the network’s complexity and shrink its spatial 
dimensions. These layers include pooling operations. Compared to conventional 
deep networks, DenseNet121 is signifcantly more effcient because it contains 
around eight million parameters. DenseNet169 extends the depth to 169 layers 
while adhering to the same architectural concepts as DenseNet121. Additionally, 
it makes use of dense blocks, which connect every layer to every layer before it, 
improving feature propagation and lowering the number of parameters. To control 
feature map expansion and avoid overftting, the network has multiple transition 
layers. With almost 14 million parameters, DenseNet169 strikes a fair compromise 
between model complexity and parameter effciency. The modular architecture of 
InceptionNetV3 includes “Inception modules” that employ parallel convolutional 
layers with various flter sizes (e.g., 1 × 1, 3 × 3, 5 × 5) inside the same module. 
This makes it possible for the model to effciently capture multiscale characteris-
tics. To lower computational costs, the network additionally uses factorized convo-
lutions, which divide bigger convolutions into smaller ones (e.g., 7 × 7 into 1 × 7 
and 7 × 1). With over 23 million parameters, InceptionNetV3 strikes a balance 
between effciency and depth throughout its several layers. 

The foundation of Xception is the concept of depthwise separable convolu-
tions. These convolutions drastically reduced the number of parameters by split-
ting the typical convolution operation into two parts: a depthwise convolution 
(spatial fltering) and a pointwise convolution (channel combination). The archi-
tecture is composed of several depthwise separable convolutional layers, with 
fully connected layers for classifcation at the end. With over 23 million param-
eters, Xception is a very effcient model with an architecture that is both simple 
and robust. 

18.4 PROPOSED RESEARCH METHODOLOGY 

This section describes the systematic procedure that was employed in this work to 
use pretrained DL models to identify PD using drawing images. The preparation of 
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the input, data preprocessing, data splitting, model training, and assessment are the 
fve primary processes in the approach. 

The frst step involves collecting drawing images from the dataset, which 
includes drawings from both healthy individuals and patients with PD. The 
dataset contains a total of 204 images, evenly divided between the two classes. 
Secondly, the raw spiral images were preprocessed, such as resizing them to 224 
× 224 pixels to meet pretrained model requirements, converting them to red, 
green, and blue (RGB) for consistent input data format, and shuffing them ran-
domly to prevent training biases and ensure good model generalization. Then 
these preprocessed data were split into training (80%) and testing (20%) sets. 
The pretrained models are trained using the training set, which consists of 163 
images split evenly between the classes for PD and those for healthy people. Each 
of the six pretrained DL models (VGG16, VGG19, DenseNet121, DenseNet169, 
InceptionNetV3, and Xception) was trained separately on the preprocessed draw-
ing images. The training data were used to fne-tune the models so that they pre-
cisely target the goal of differentiating between people who have PD and others 
who are healthy. The performance of every trained model is evaluated using the 
testing data consisting of 41 images. A range of performance criteria, including 
the F1score, accuracy, precision, recall, and ROC curve, are used to assess the 
models’ effectiveness. 

TP + TN
• Accuracy = (18.1) 

TP + TN + FP + FN 
TP

• Precision = (18.2) 
TP + FP 
TP

• Recall = (18.3) 
TP + FN 

Precision × Recall 
• F1-Score 2  (18.4) = ×  

Precision + Recall 

The research methodology for detecting PD using pretrained DL models is illus-
trated in Figure 18.3. 

FIGURE 18.3 Proposed research methodology. 
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18.5 EXPERIMENT EVALUATION AND RESULTS 

The experimental work used Jupyter Notebook within Google Colab, a cloud-based 
platform providing interactive computing resources. Depending on availability, 
Google Colab offers a free tier with graphics processing unit (GPU) support, specif-
cally utilizing NVIDIA Tesla K80, T4, or P100 GPUs. In addition, the hyperparameter 
tuning involves using the “sigmoid” activation function and “binary_crossentropy” 
loss function, optimized with “adam.” For 50 epochs, the model is trained with a 
batch size of 32. 

During training, the VGG16 model showed remarkable performance, attaining 
fawless metrics with 100.00% precision, accuracy, recall, and F1 score. It continued 
to perform well on the testing set, achieving an F1 score of 97.44%, accuracy of 
97.56%, precision of 95%, and recall of 100.00%. These outcomes highlight how 
well VGG16 can categorize photos of drawings to diagnose PD. Figure 18.4 depicts 
the confusion matrix, Figure 18.5 shows the training and testing accuracy curves, 
and Figure 18.6 shows the ROC curve. 

With an accuracy of 95.09%, precision of 91.21%, recall of 100.00%, and F1 score 
of 95.40%, the VGG19 model demonstrated strong performance. Testing results for 
the model showed 90.24% accuracy, 82.61% precision, 100.00% recall, and 90.48% 
F1 score. Figure 18.7 presents the confusion matrix for VGG19. Figure 18.8 shows 
the training and testing accuracy curves, and Figure 18.9 shows the ROC curve. 

FIGURE 18.4 Confusion matrix (VGG16). 
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FIGURE 18.5 Training and test accuracy curves (VGG16). 

FIGURE 18.6 ROC curve (VGG16). 
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FIGURE 18.7 Confusion matrix (VGG19). 

FIGURE 18.8 Training and test accuracy curves (VGG19). 
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FIGURE 18.9 ROC curve (VGG19). 

Training metrics of 99.39% accuracy, 100.00% precision, 98.80% recall, and 
99.39% F1 score were attained by the DenseNet121 model. On the testing set, the 
model achieved 87.80% accuracy, 85.00% precision, 89.47% recall, and 87.18% F1 
score. Figure 18.10 displays the confusion matrix, while Figure 18.11 shows the train-
ing and testing accuracy curves., and the ROC curve is presented in Figure 18.12. 

The training metrics of the DenseNet169 model were 100.00% for accuracy, 
100.00% for precision, 100.00% for recall, and 100.00% for F1 score. The model 
performed as follows on the testing set: 90.24% accuracy, 94.12% precision, 84.21% 
recall, and 88.89% F1 score. Figures 18.13 and 18.14 depict the training and testing 
accuracy curves, Figure 18.15 shows the ROC curve, and Figure 18.13 shows the 
confusion matrix. 

Training metrics of 100.00% for accuracy, 100.00% for precision, 100.00% 
for recall, and 100.00% for F1 score were attained by the InceptionNetV3 model. 
It obtained 92.68% accuracy, 94.44% precision, 89.47% recall, and 91.89% F1 
score on the testing set. Figure 18.16 displays the confusion matrix, Figure 18.17 
shows the training and testing accuracy curves, and Figure 18.18 shows the ROC 
curve. 

With training parameters of 100.00% accuracy, 100.00% precision, 100.00% 
recall, and 100.00% F1 score, the Xception model performed admirably. On the 
testing set, it produced an accuracy of 90.24%, precision of 85.71%, recall of 94.74%, 
and F1 score of 90.00%. The confusion matrix is shown in Figure 18.19, the training 
and testing accuracy curves are illustrated in Figure 18.20, and the ROC curve is 
presented in Figure 18.21. 
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FIGURE 18.10 Confusion matrix (DenseNet121). 

FIGURE 18.11 Training and test accuracy curves (DenseNet121). 
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FIGURE 18.12 ROC curve (DenseNet121). 

FIGURE 18.13 Confusion matrix (DenseNet169). 
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FIGURE 18.14 Training and test accuracy curves (DenseNet169). 

FIGURE 18.15 ROC curve (DenseNet169). 
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FIGURE 18.16 Confusion matrix (InceptionNetV3). 

FIGURE 18.17 Training and test accuracy curve (InceptionNetV3). 
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FIGURE 18.18 ROC curve (InceptionNetV3). 

FIGURE 18.19 Confusion matrix (Xception). 
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FIGURE 18.20 Training and test accuracy curve (Xception). 

FIGURE 18.21 ROC curve (Xception). 
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The performance metrics for each model are detailed in Table 18.1. Notably, 
VGG16 surpassed all other models in training and testing outcomes, with excep-
tional performance across accuracy, precision, recall, and F1 score. 

Various researchers have worked on neurological disorders like AD, PD, schizo-
phrenia, epilepsy, ataxia, Huntington’s disease, and so forth. Among them, PD is 
the second most prevalent neurological disorder after AD. To diagnose PD patients 
accurately and early, researchers used a variety of ML and DL approaches to work 
on datasets including both motor and nonmotor symptoms. The reason behind this 
study is to frame a prediction system for classifying healthy individuals and PD 
patients based on handwritten drawings. A comparison of related works on the hand-
writing datasets is shown in Table 18.2. 

Extensive research is currently under way to detect the cause and cure of PD 
and to develop state-of-the-art preventive measurements. The development of more 
precise and effective diagnostic models may lessen the morbidity and mortality rate. 

TABLE 18.1 
Performance Metrics of All Pretrained Models 

Model Metric Training (%) Testing (%) 
VGG16 Accuracy 100.00 97.56 

Precision 95.00 

Recall 100.00 

F1 score 97.44 

VGG19 Accuracy 95.09 90.24 

Precision 91.21 82.61 

Recall 100.00 100.00 

F1 score 95.40 90.48 

DenseNet121 Accuracy 99.39 87.80 

Precision 100.00 85.00 

Recall 98.80 89.47 

F1 score 99.39 87.18 

DenseNet169 Accuracy 100.00 90.24 

Precision 94.12 

Recall 84.21 

F1 score 88.89 

InceptionNetV3 Accuracy 100.00 92.68 

Precision 94.44 

Recall 89.47 

F1 score 91.89 

Xception Accuracy 100.00 90.24 

Precision 85.71 

Recall 94.74 

F1 score 90.00 
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TABLE 18.2 
Comparative Analysis 

Reference Best Method Dataset (Type) 
Precision 

(%) 
F1 Score 

(%) 
Recall 
(%) 

Accuracy 
(%) 

[19] CNN + HOG Sinusoidal and − − 85.4 83.1 
spiral handwritten 
drawings 

[20] Logistic Digitized spiral 66 80 100 91.6 
regression drawing 

[21] CNN Wire cube and − − − 93.5 
pentagon spiral 
drawing 

[22] VGG19 model NIATS dataset − − − 96.67 

[25] DT Arabic online − − − 92.86 
handwriting 

[27] Transfer NewHandPD 98 − 86 95.29 
Learning 

[32] SVM Spiral − − − 83 

[30] CNN HandPD dataset − − − 95 

[25] CNN PD spiral drawings − 97.7 − 96.5 
using digitized 
graphics tablet 
dataset 

[24] Archimedean − 95 − 94 
spiral drawings 

Our work VGG16 Drawing images 95 97.44 100 97.56 

Moreover, DL techniques are fexible to perform better in terms of performance in 
healthcare. 

18.6 CONCLUSION AND FUTURE WORK 

Using the spiral and wave-based PD drawing dataset, six pretrained DL architectures − 
VGG16, VGG19, DenseNet121, DenseNet169, InceptionNetV3, and Xception − have 
been used for the automated and early detection of PD. To determine which of these 
six pretrained models is the best classifer for distinguishing PD patients from healthy 
persons, a comparison of the models has been conducted. With accuracy, precision, 
recall, and an F1 score of 97.56%, 95%, 100%, and 97.44%, respectively, VGG16 out-
performed the others. The suggested model may be able to help with the early diagno-
sis of PD and act as a tool for healthcare stakeholders, depending on the performance 
attained. In the future, other datasets including audio voice features, gait data, MRI, 
EEG, and EMG should be used along with state-of-the-art DL models to accurately 
detect the early stage of PD with better performance. 
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19.1 INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disorder that is a major concern of 
cause for dementia. The starting stage of this disease effects the cognitive abilities of 
the patient. A patient with AD has impairment or abnormality of ventromedial tempo-
ral lobe, which is important for episodic memory and the ability to recall past events 
or experiences [1]. Further progress of AD can affect the patient’s physical activities 
by interrupting their day-to-day basic actions. This causes the patient to depend on 
other persons even for use of washroom, dressing, eating, etc. [2]. All over the world, 
60−70% of dementia cases are caused by the progressive neurodisease AD. In 1906, 
Alois Alzheimer described the disease characteristics as it begins with experiencing 
episodic memory loss and gradual diminishment in cognitive functions that even effect 
day-to-day activities [3]. This chapter discusses the various methods and innovative 
approaches for early detection to fulfll and improve AD patients’ quality of life. 

Currently the detection process of AD depends on clinical assessments and behav-
ioral cognitive abilities of patient’s history, which can be infuenced by the experience of 
doctors or physicians [4]. The digitization of detection of AD involves integration with 
electronic health records [5], which allow the patients to share the data to healthcare 
providers for further suggestions and curative treatment therapies. Although sharing 
such records has advantage over other methods, privacy and security are major con-
cerns for safeguarding the confdentiality and integrity of the patient’s data from unau-
thorized access [6] The AD disease detection and diagnosis and its management can be 
done by integrating several advanced technologies like deep learning algorithms, cloud 
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computing, and fog computing. These technologies provide cutting-edge solutions to 
improve the detection rate and provide better treatment therapies and continuous moni-
toring of a patient’s well-being and recovery from the disease. 

19.2 RELATED WORK 

M.S. Bhargavi [7] stated that AD causes brain shrinkage and cell destruction and is the 
primary cause of progressive dementia. Early identifcation can help limit the course 
of the disease, especially in those with mild cognitive impairment (MCI). To address 
AD diagnosis, the EffcientNetB0 model is fne-tuned on a Kaggle dataset using trans-
fer learning (TL) by Pallawi et al. [8]. In multiclass classifcation, the model outper-
forms current methods with an accuracy of 95.78%. AD must be promptly diagnosed 
and treated, as stated by Singh Chhabra et al. [9]. They presented a deep learning 
(DL) method that combines structural magnetic resonance imaging (sMRI), functional 
magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) to provide 
an extensive feature set for the purpose of identifying AD from multimodal neuroim-
aging data. With state-of-the-art fndings of 93.5% accuracy, 92.3% sensitivity, and 
94.6% specifcity, the suggested model − which uses a three-tiered architecture of 
sMRI convolutional neural network (CNN), fMRI recurrent neural network (RNN), 
and DTI based Graph convolutional network (GCN) − strongly suggests its generaliz-
ability and potential for clinical application. Elgendy, O et al., [10] suggests ways to cat-
egorize brain MRI pictures into four phases of AD. The proposed method by authors 
outperformed 90% accuracy and 90% F1 score in every class. 

One of the main causes of death in industrialized nations is neurological illness, 
such as AD, as stated by Trivedi et al. [11]. With a distributed client-server archi-
tecture and independent and identically distributed (IID) datasets, the framework 
displayed increased capabilities for early-stage detection and classifcation of AD, 
achieving 98.53% accuracy with Alex Net. Sampath et al. [12] offered a superior 
method by using an optimized DL model and improving MRI image processing for 
more accurate biomarker discovery. The approach of S.S, G.M et al., [13] improved 
accuracy by 0.66% and decreased detection errors by 0.0345% when compared 
to previous methods by merging the cuckoo search optimizer with a deep belief 
network (DBN). Arya et al. [14] uses an artifcial semantic segmentation algorithm 
based on the Segnet architecture to classify hippocampal atrophy in brain MRI 
data. Prabhakar et al. [15] have worked to cultivate a machine learning (ML) model 
that can discover AD early and perchance result in prompt intervention and more 
effective therapy by utilizing nonamyloid blood markers. Moorthy et al. [16] have 
studied recent innovations in ML approaches for prompt AD identifcation and 
shows how they could develop patient aftermaths and diagnostic exactitude. The 
study determines by what means K-nearest neighbors (KNN) containers develop 
early conclusions and treatment methods by overtaking support vector machines 
(SVM), with 98.98% accuracy  in AD diagnosis using MRI brain images. The 
amalgamation of cerebrospinal fuid (CSF) and plasma proteins with SVM earn 
the highest accuracy in AD diagnosis. The effectiveness of this technique by Luz 
et al. [17] in AD diagnosis and assessment features perfect, gainful biomarkers. 
Khadatkar et al. [18] have estimated numerous classifers through metrics such 
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as accurateness, fastidiousness, recall, and F1 score to expedite transfer wisdom. 
The authors discovered alternatives to MRI, such as positron emission tomogra-
phy (PET) scans, to advance diagnostic accuracy. Lu et al. (2023) investigated AD 
and attained an F1 score of 96.2% using handwriting analysis and voice patterns 
from more than 15,000 samples using ML. The authors research has created the 
“revoAD” smartphone app, which serves as an effective tool for that facilitates bet-
ter communication with  healthcare professionals with ten times closer diagnosis 
and 97.6% training exactitude. Irfan et al. [19] presented major developments in 
DL for AD recognition, proving its higher performance over customary ML, and 
tackles current challenges with preparation processes and dataset convenience. 

AD causes subtle mild brain changes before symptoms were appear, early diagno-
sis of the disease can be subtle challenge stated by Saxena et al. [20]. The Computer-
Aided Alzheimer’s Disease Diagnosis (CAADD) [21] structures from 2017 to 2023 
are thoroughly analyzed in this study using both ML and DL. The study estimates the 
ML and DL procedures pragmatic to neuroimaging data as well as show indicators 
to afford likely directions for supplementary study. Mandawkar et al. [22] recom-
mends a Hybrid Cuttle Fish−Grey Wolf Optimisation (CUF-GW)−tuned Ensemble 
Classifer model that enhances uncovering precision by using optimized combina-
tion parameters and predictable ML classifers. The model completed 97.205% rec-
ognition accuracy using exercise data from the Alzheimer's Disease Neuroimaging 
Initiative  (ANDI) database, and 97.665% exposure accuracy in k-fold evaluation. 
Highlighting CNNs and vision transformers (ViTs), Hcini et al. [23] offered a thor-
ough valuation of DL methods for AD classifcation by means of brain imaging data. 

The ML ideal offered by Uddin et al. [24] comprises Gaussian NB, decision tree, 
random forest, XG Boost, voting classifer, and gradient boost to predict AD. The vot-
ing classifer with the best validation accuracy of 96% using the Open Access Series of 
Imaging Studies (OASIS) dataset shows how ML algorithms may greatly enhance early 
diagnosis and lower the death rates from AD. Table 19.1 offers a survey of these studies. 

TABLE 19.1 
Literature Survey of Existing Methods for Detection of AD Using DL and 
Federated Learning (FL) 

Datasets 
S. No. 
1 

Author 
Zhang, L., et al. 
(2024) 

Used 
ADNI, 
OASIS 

Methodology 
Multimodal FL model 
combining MRIs and PET 

Key Findings 
Detection accuracy 
improvement by 7% 

scans 

2 Gomez, A., et al. 
(2024) 

ADNI Personalization of FL 
models to individual 
patient data using TL 

Diagnostic accuracy 
improvement by 90% 

3 Smith, J., et al. 
(2023) 

ADNI, 
AIBL 

Optimization of 
communication costs in 
FL models using model 
pruning and quantization 

Reduced communication 
costs by 30% with a 
2% drop in accuracy 
(from 88% to 86%) 

(Continued) 
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TABLE 19.1 (Continued) 
Literature Survey of Existing Methods for Detection of AD Using DL and 
Federated Learning (FL) 

Datasets 
S. No. Author Used Methodology Key Findings 

4 Rahman, H., 
et al. (2023) 

ADNI, UK 
Biobank 

Applied cross-silo FL with 
decentralized institutions 
sharing their models 

Detection accuracy of 
89%. 

5 Li, M., et al. 
(2023) 

ADNI Utilized edge computing in 
FL to process data locally 
before sharing with the 
central server 

Reduced latency 

6 Li, X., et al. 
(2022) 

ADNI Implemented privacy-
preserving techniques 
using differential privacy 
in FL 

Accuracy 85%, data 
privacy 

7 Shen, W., et al. 
(2022) 

ADNI, 
NACC 

Applied TL techniques in a 
federated setting to predict 
disease progression 

Prediction accuracy 83% 
using pretrained 
models 

8 Kim, J., et al. 
(2022) 

ADNI Addressed the challenge of 
imbalanced datasets in FL 
using synthetic data 
augmentation 

Improvement in 
minority class 
performance. 

9 Kumar, R., et al. 
(2021) 

ADNI, 
AIBL 

Developed an ensemble 
method combining FL 
models from different 

Balanced accuracy 88% 

institutions 

10 Zhang, H., et al. 
(2021) 

ADNI Introduced adaptive 
learning rates in FL 
models for AD detection 

Improved convergence 
speed, accuracy 

11 Zhao, Y., et al. 
(2021) 

ADNI, 
OASIS 

Applied FL to combine 
data from multiple 
institutions without 

Accuracy of 87% 

sharing sensitive data 

12 Wang, T., et al. 
(2020) 

ADNI Focused on early detection 
using lightweight FL 
models 

Accuracy 82% 

13 Patel, S., et al. 
(2020) 

ADNI Implemented FL using MRI 
data for AD detection 

Accuracy 84% 

14 Liu, Y., et al. 
(2020) 

ADNI, 
AIBL 

Developed scalable FL 
models for discovering 
biomarkers related to AD 

80% precision using 
biomarkers dataset 

15 Xu, L., et al. 
(2020) 

ADNI Applied differential privacy 
techniques in FL models 
for secure AD detection 

Accuracy 83%, 
protecting patient data 
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19.3 CHALLENGES IN DIGITAL HEALTHCARE 
IMPLEMENTATION FOR AD 

Providing solutions for AD with digital healthcare systems undergoes substantial 
diffculties like privacy of data, security and integrity of the systems, validations, 
ethical concerns, and cost. The author Pyrrho et al. [25] stated that to protect the 
sensitive data of AD patients, there is a need for securing electronic health records 
and digital health platforms. Merging previous healthcare systems also faces chal-
lenges; for example, many digital devices do not rely on outdated digital platforms 
that cannot be integrated easily with modern devices and systems. These complexi-
ties in achieving effortless integration were discussed by Herrmann.T et al. [26] and 
have highlighted the necessity of benchmarked protocols for improving interoper-
ability. As stated by Doll et al. [27], stakeholders have to collaborate collectively and 
follow to common data standards in order to achieve interoperability. Usability and 
accessibility are essential, particularly for AD patients who may experience cogni-
tive impairment. User-centered design principles may enhance the effectiveness of 
digital health interventions for AD, according to a study by Dabbs et al. [28]. Grande 
et al. [29] discussed the importance of consistent standards along with the complex-
ity of the standardized environment around digital health technologies. 

19.3.1 COMPUTATIONAL COMPLEXITY 

To provide digital healthcare solutions for AD, dealing with computational complex-
ity is a major concern, as it involves in dealing with large amounts of heterogeneous 
data that include clinical data, records, image data of scanned reports, genetic bio-
markers information, and data from wearable devices and sensors. Liu, Y. et al. [30] 
have stated that computational complexity of integrating data from different devices 
is a signifcant challenge. Zhang et al. [31] have highlighted the challenges and dif-
fculties in developing algorithms that deal with high processing power and are cost 
effcient. 

19.3.2 CHALLENGES IN FOG, CLOUD, AND DEEP LEANING TECHNOLOGIES 

DL, fog computing, and cloud computing technologies bring various opportunities in 
treating AD. However, they face the following problems for detecting and diagnos-
ing AD. 

DL model training: For AD diagnosis and treatment, DL models must be 
trained on the data provided. In the words of Li et al. [32], the complexity 
and high dimensionality of AD data, like CT scan images and biomarkers 
data, require the use of complex neural networks that are computationally 
intensive. 

Real-time processing: By bringing immediate information processing capabil-
ities near to the information source, fog computing aims to reduce latency. 
However, due to their constrained processing capability, DL models are 
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hard to implement in fog nodes. The diffculty of implementing highly 
resource-intensive DL algorithms in fog environments without reducing 
performance has been brought into focus by Shen et al. [33]. 

Data Privacy and Security: Providing security for distributed servers in cloud and 
fog environments is a challenging task. Kim et al. [34] discussed the signif-
cance of deploying strong encryption techniques and protected communication 
protocols to secure patient data from security breaches and illegitimate access. 

19.3.3 NETWORK REQUIREMENTS 

Low latency requirements: The main goal of fog computing is to minimize 
the latency value by processing the data at edge level. Despite that, imple-
menting complicated CNNs is a challenging task with respect to latency 
reduction. Kumar et al. [35] has discussed optimization of DL algorithms 
for achieving minimum latency. 

Bandwidth constraints: Transferring large amounts of data that are gathered 
from various sources, including edge computing devices, the fog environ-
ment, and the cloud layer, overburdens bandwidth. To establish uninter-
rupted data transfer and data processing, it is crucial to harness bandwidth 
effectively. Guo et al. [36] have highlighted the necessity for effective data 
compression and transmission techniques to resolve bandwidth limitations. 

19.3.4 INFRASTRUCTURE REQUIREMENTS 

Resource allocation: Effcient resource allocation in distributed environments, 
especially in cloud computing and fog computing, plays a major role in 
supporting computational need and support for running complex DL algo-
rithms. Chen et al. [37] have discussed various challenges of dynamic 
resource allocation and load-balancing techniques to achieve optimal eff-
ciency and resource effciency. 

Scalability: AD-related data are huge, and to adjust to an increase in the 
volume of data, scaling up cloud and fog infrastructure is challenging task. 
Li et al. [38] focused on the need for scalable and elastic system designs that 
can manage large-scale applications without deteriorating performance. By 
carrying real-time data processing abilities near to the data source, fog com-
puting seeks to lower latency. However, because of their constrained process-
ing power, DL models are diffcult to implement in fog nodes. The challenge 
of implementing resource-intensive DL algorithms in fog environments with-
out sacrifcing performance is brought to light by Wen et al. [39]. 

19.4 DEEP LEARNING NETWORKS AND OPTIMIZATION 
ALGORITHMS IN ALZHEIMER’S DISEASE 

Due to its capacity to assess involved and high-dimensional data, DL networks 
emerged as a key element in studying and dealing with AD. Liu et al. [40] stated 
that by knowledge of the spatial hierarchies of brain pictures, CNNs have shown 
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auspicious results in recognizing early hints of AD, which are needed for detecting 
and tracing the disease’s course. Research by Vaswani et al. [41] stated that RNNs can 
calculate exactly how AD patients’ cognitive cost will progress, a strength that delivers 
signifcant evidence for individualized handling regimens. According to Schraudolph 
et al. [42], converters can be used to incorporate multimodal data, such as inherent, 
imaging, and clinical data, to increase the accuracy of AD diagnosis and prediction. 
The optimization of DL models through iteratively changing model constraints to 
minimize the loss function is a joint application of gradient descent and its derivatives, 
such as stochastic gradient descent (SGD), minibatch gradient descent, and adaptive 
techniques of Adam. Snoek et al. [43] emphasized the success of optimization pro-
cedures in circumstances with profuse adding resources. Zhang et al. [44] illustrated 
how Bayesian optimization can be used in hyper parameter tuning of DL models, with 
which  signifcant improvements can be achieved in accuracy.. 

19.5 METHODOLOGY 

This section illustrates the proposed methodology for detecting AD. 

19.5.1 DATASET DESCRIPTION 

In 2004, to investigate AD, the ADNI research project was launched. The dataset 
consists imaging fles, including fMRI, sMRI scans, and PET scans. It has three 
classes, namely cognitively normal (CN), MCI, and AD. 

19.5.2 DEEP FEDERATED LEARNING CNN SCHEME (DFLCNNS) 

This chapter demonstrated the architecture for classifying AD, as shown in 
Figure 19.1. The architecture has three different layers, namely the edge com-
puting layer, the fog computing layer and the cloud computing layer. Initially, 
the AD patient’s data (blood samples, ECG, and MRI scan) are collected from 
various local laboratories such as at individual clinical hospitals. These data are 
maintained in an individual electronic health record database for further process-
ing. The entire process of data offoading is carried out at the edge computing 
layer with several diagnostic tools and bio medical instruments used for diagnosis. 
As far as the FL is concerned, the collected data must be trained locally with 
DFLCNNS at the individual hospitals, which are connected to a centralized cloud 
server present at the main hospital that acts as a head for AD detection. The local 
training is done at the fog computing layer. 

As it is depicted in Figure 19.1, the local clinics that have undergone training 
generate weights for the aggregated model, which is trained at the main hospital 
that is directly connected to the cloud server. With this local training and aggre-
gation, FL is implemented for achieving optimality by training smaller sample 
datasets received at the edge devices. Training models with smaller sample datas-
ets at local processing nodes results in reducing processing time at the aggregated 
model when it is dealing with large samples of data. Local training is done at 
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FIGURE 19.1 Architecture for Alzheimer’s disease detection using deep federated learning 
with optimization. 

the fog computing layer, which is near to edge devices, and model aggregation 
is carried out at the cloud computing layer. This architecture DFLCNNS uses 
an EffcientNetB2 DL model for classifcation of AD. To achieve better accuracy 
and other performance metrics, the architecture uses the Grey Wolf Optimizer 
(GWO) optimization algorithm for feature extraction at local training and model 
aggregation. 
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19.5.3 EFFICIENTNETB2 ARCHITECTURE FOR ALZHEIMER’S DISEASE CLASSIFICATION 

Implementation and effectiveness are enhanced via the CNN architecture known as 
EffcientNetB2. The graphical representation is shown in Figure 19.2. The layers and 
functions of the architecture can be expressed quantitatively: 

• Input layer: Receives an picture of size Hght × Wdth × Clr , where Hght and Wdth 

are denoted by height and width and also Clr  represents the number color 
channels (E.X. 280 × 280 × 3). 

• Stem block: 2D Convolution  ˜ Batch Normalized ˜ Rectified Linear unit 

FIGURE 19.2 Effcient B2 architecture. 
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Accurately, for a convolution process, 

OP  In .ker + biasa b c put , , , c, ,  = ˜ a b c d  a p.b q.d+ + 

p q, 

where OP is the output features map, Input is the input image, and ker is the convolu-
tion kernel. 

19.5.3.1 Mobile Inverted Bottleneck Convolution Blocks 
Batch normalization, residual connection, depthwise convolution, and pointwise 
convolution are included in every mobile inverted bottleneck convolution block. 
With input M, for a mobile inverted bottleneck convolution block, 

M = Rectified Linear unit Batch Normalized ( )Input ( (Depthwise Conv M )) 
˝ Pointwiswe Convoulation  ˝ Rectified Linear unit 

19.5.3.2 Global Average Pooling (GAP) 
GAP decreases each feature map to a single value: 

1 
m n 

OP = Ma Hght ,Wdth ,a˜˜H × Wght dth H Wght1 dth1 

This is the fully connected layer: 

OP softmax W M  + Bias)= ( m . 

Here, Wm is the weight matrix. 

19.6 GREY WOLF OPTIMIZER (GWO) 

The GWO algorithm imitates the chasing behavior of gray wolves. It is used to improve 
hyperparameters of the model. In this work, GWO is used for optimizing performance 
of EffcientNetB2. The design of GWO algorithm is shown in Figure 19.3. 

The accurate stages involved are 

19.6.1 POSITION UPDATE 

Gray wolves apprise their locations constructed on the place of w w2 3 wolves: 1, ,  w 

Uw = C w. − Gw 1 i1 1 

Uw2 
= C w. − Gw 2 i2 
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FIGURE 19.3 Grey Wolf Optimizer architecture. 

Uw = C w. − Gw 3 i3 3 

w + w + w new 1 2 3Gi = − AU. 
3 

where A = 2 .l v1 − l and C = 2.v2 are coeffcient. 
l decreases linearly from 2 to 0, and v v2 are random vectors in [0, 1]. 1, 

19.6.2 OBJECTIVE FUNCTION 

Classically, the objective function is the performance of negative metrics. 
For hyperparameter optimization: 

h G  = Accuracy G( )  ( )  
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19.7 RESULTS AND DISCUSSIONS 

The following bar plot provides an accuracy comparison of four different DL mod-
els: ResNet, DenseNet, Inception v3, and Effcient Net. 

From Figure 19.4, it is observed that 92.2% highest accuracy is achieved by 
EffcientNetB2. An accuracy 89.0% is achieved by DenseNet, and ResNet has achieved 
88.5% accuracy. Inception V3, when applied to the dataset provided, has recorded accu-
racy of 87.8%. This analysis shows that EffcientNetB2 is the most effcient of the models. 

Figure 19.5 illustrates the loss comparison values for ResNet, DenseNet, Inception 
v3, and EffcientNetB2. The plot in the fgure shows that EffcientNetB2 attained 
the lowest loss value of 0.29, which is effective for minimized prediction error and 
contributes to the performance improvement and effciency. Inception v3 achieved 
0.39 loss value, which is highest among the four DL architectures, showing poorer 
performance than the other models. ResNet and DenseNet have attained 0.35 and 
0.32 loss values, respectively. Thus, Figures 19.4 and 19.5 show that EffcientB2 has 
the highest accuracy and lowest error values. 

Figure 19.6 depicts the values of F1 score for different DL architectures for clas-
sifcation of the AD dataset. For the ResNet DL architecture, 0.87 is the F1 score, 
DenseNet achieved 0.88, Inception v3 slightly slower than previous two architec-
tures with a value of 0.86, and fnally EffcientNetB2 got a 0.89 value F1 score. The 
results shows that EffcientNetB2 as the most effcient model in terms of the F1 
score, demonstrating its capability in balancing precision and recall. Interpretation 
of the results shows that ResNet with 0.87 value and Inception v3 with 0.86 are less 
effcient when compared with the other two architectures. 

Figure 19.7 highlight EffcientNetB2 with ten hours training time as the most eff-
ciently designed model for training, succeeded by DenseNet at 12 hours, Inception 
v3 takes 14 hours, and ResNet takes 15 hours for training. For cloud computing 

FIGURE 19.4 Accuracy of EffcientNetB2. 
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FIGURE 19.5 Loss comparison of EffcientNetB2. 

and fog computing environments, it is preferable to choose EffcientNetB2 with less 
training time. These results highlight the balancing factors between EffcientNetB2 
model complexity and training time. 

The bar plot shown in Figure 19.8 presents testing times (in hours) for four DL 
models: ResNet, DenseNet, Inception v3, and EffcientNetB2. EffcientNetB2 has 
achieved the least testing time of 4.0 hours, which shows that EffcientNetB2 is not 
just effcient in training but also outperforms with its testing speed. 

Figure 19.9 depicts the model communication cost for the federated DL model. 
When DL models are used in FL, the data are communicated between the central 

FIGURE 19.6 Comparison of F1 score values. 
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FIGURE 19.7 Comparison of training time. 

server and distributed clients. This communication includes parameter updates and 
training details. As this communication affects the system’s performance, there is 
a cost incurred with the process of communication. The plot shown in Figure 19.9 
illustrates comparison of communication cost for the selected DL models. Due to 
the concise architecture of EffcientNetB2, 0.9 GB is the cost associated with the 

FIGURE 19.8 Comparison of testing time. 
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FIGURE 19.9 Model communication cost comparison. 

communication. However, DenseNet requires higher data transfer of 1.1 GB per 
round, and ResNet communicates at 1.2 GB. Among the four models, Inception v3 
has the highest communication cost of 1.3 GB per round, as it has a complex archi-
tecture. The plot in Figure 19.9 shows that EffcientNetB2 is more advantageous to 
consider for training models for deep FL for detecting AD classifcation. 

Figure 19.10 illustrates the effciency of different optimization algorithms applied 
in FL with the combination of EffcientNetB2. GWO attained good federated 

FIGURE 19.10 Comparison of Federated Learning accuracies of EffcientNetB2 with dif-
ferent evolutionary algorithms. 
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FIGURE 19.11 Comparison of federated learning accuracies of ResNet with different evo-
lutionary algorithms. 

accuracy at 84.5% among other algorithms with client results. These observations 
show that GWO is the most effcient optimization algorithm. 

The above Figure 19.11 shows the results for optimization algorithms for ResNet in 
FL, where GWO has achieved the highest federated accuracy of 85.5%. Figure 19.12 
shows DenseNet with various optimization algorithms and their federated accuracies. 

FIGURE 19.12 Comparison of federated learning accuracies of dense net with different 
evolutionary algorithms. 
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FIGURE 19.13 Comparison of federated learning accuracies of inception V3 with different 
evolutionary algorithms. 

Figure 19.13 shows the federated accuracy results for optimization algorithms for 
Inception v3 in FL with various evolutionary optimization algorithms. 

The bar plot depicted in Figure 19.14 displays the accuracy comparison of dif-
ferent federated DL models from various studies from previous reseach, includ-
ing a proposed model. The data comprise four entries: Li et al. (2022) with CNN, 

FIGURE 19.14 Comparison of existing methodologies with proposed DFLCNN. 
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Zhang et al. (2023) with MobileNet, Wang et al. (2024) with VGG, and the proposed 
DFLCNN model. It shows that DFLCNN achieves the highest accuracy of 92.2%, 
signifcantly outperforming the other models. MobileNet follows with an accuracy 
of 89.0%, VGG at 88.5%, and CNN at 85.0%. 

19.8 CONCLUSION 

In this chapter, we have explored the applications of federated DL models for classi-
fcation of AD, specifcally applying EffcientNetB2 and optimizing the model with 
the GWO algorithm. The obtained results demonstrated that this scheme yields bet-
ter performance metrics, where accuracy is 92.2%, a loss is 0.29, and achieved an F1 
score with value of 0.89. In addition, the cost of model communication is effectively 
managed at 0.9 GB, which highlights its effciency in a deep FL environment. These 
fndings specify that by optimizing advanced neural networks with dense layers, we 
can achieve high accuracy and lower model communication cost, which is an encour-
aging solution for real-world applications in distributed environments, like cloud and 
fog environments that receive data from various digital healthcare systems. Despite 
these results, DFLCNNS is limited to a specifc dataset. Future research can be 
focused on applying evolutionary optimization algorithms to different datasets with 
different parameter settings. Additionally, the research can be elaborated by validat-
ing model performance on biomarkers datasets. 

REFERENCES 

1. Alzheimer’s Association. (2023). 2023 Alzheimer’s Disease Facts and Figures. 
Alzheimer’s & Dementia. Retrieved from Alzheimer’s Association. https://www. 
alz.org/getmedia/76e51bb6-c003-4d84-8019-e0779d8c4e8d/alzheimers-facts-and-
fgures.pdf 

2. Nicolini, C., & Fahnestock, M. (2024). Pathophysiology of Alzheimer’s disease: From 
amyloid plaques to tau tangles. Current Alzheimer Research, 21(2), 198–212. 

3. Liu, Y., Wang, J., & Liu, J. (2024). The role of APOE ε4 in Alzheimer’s disease: 
Current understanding and future perspectives. Journal of Alzheimer’s Disease, 90(1), 
123–135. 

4. Miller, R. C., & Iadecola, C. (2023). Infammation and oxidative stress in Alzheimer’s 
disease: Insights from recent studies. Neurobiology of Aging, 116, 234–249. 

5. Angelopoulou, E., & Papageorgiou, S. G. (2025). Telemedicine in Alzheimer’s disease 
and other dementias: Where we are? Journal of Alzheimer’s Disease, 103(1), 3–18. 
https://doi.org/10.1177/13872877241298295 

6. López, L., Green, A. R., Tan-McGrory, A., King, R. S., & Betancourt, J. R. (2011). 
Bridging the digital divide in health care: The role of health information technology in 
addressing racial and ethnic disparities. The Joint Commission Journal on Quality and 
Patient Safety, 37(10), 437–445. https://doi.org/10.1016/S1553-7250(11)37055-9. 

7. Bhargavi, M. S., & Prabhakar, B., “Deep learning approaches for early detection of 
Alzheimer’s disease using MRI neuroimaging,” 2022 International Conference on 
Connected Systems & Intelligence (CSI), Trivandrum, India, 2022, pp. 1–6. https://doi. 
org/10.1109/CSI54720.2022.9924058. 

8. Pallawi, S., & Singh, D. K., “Detection of Alzheimer’s disease stages using pre-trained 
deep learning approaches,” 2023 IEEE 5th International Conference on Cybernetics, 
Cognition and Machine Learning Applications (ICCCMLA), Hamburg, Germany, 
2023, pp. 252–256. https://doi.org/10.1109/ICCCMLA58983.2023.10346730. 

https://www.alz.org/getmedia/76e51bb6-c003-4d84-8019-e0779d8c4e8d/alzheimers-facts-and-figures.pdf
https://www.alz.org/getmedia/76e51bb6-c003-4d84-8019-e0779d8c4e8d/alzheimers-facts-and-figures.pdf
https://www.alz.org/getmedia/76e51bb6-c003-4d84-8019-e0779d8c4e8d/alzheimers-facts-and-figures.pdf
https://doi.org/10.1177/13872877241298295
https://doi.org/10.1016/S1553-7250(11)37055-9
https://doi.org/10.1109/CSI54720.2022.9924058
https://doi.org/10.1109/CSI54720.2022.9924058
https://doi.org/10.1109/ICCCMLA58983.2023.10346730


  

  

  

  

  

   
 
 

 
   

 
 

  

  

   
 
 

  

  

308 Computational Intelligence Algorithms 

9. Singh Chhabra, G., Guru, A., Rajput, B. J., Dewangan, L., & Swarnkar, S. K., 
“Multimodal neuroimaging for early Alzheimer’s detection: A deep learning approach,” 
2023 14th International Conference on Computing Communication and Networking 
Technologies (ICCCNT), Delhi, India, 2023, pp. 1–5. https://doi.org/10.1109/ 
ICCCNT56998.2023.10307780. 

10. Elgendy, O., & Nassif, A. B., “Alzheimer detection using different deep learning 
methods with MRI images,” 2023 Advances in Science and Engineering Technology 
International Conferences (ASET), Dubai, United Arab Emirates, 2023, pp. 1–6. 
https://doi.org/10.1109/ASET56582.2023.10180640. 

11. Trivedi, N. K., Jain, S., & Agarwal, S., “Identifying and categorizing Alzheimer’s dis-
ease with lightweight federated learning using identically distributed images,” 2024 
11th International Conference on Reliability, Infocom Technologies and Optimization 
(Trends and Future Directions) (ICRITO), Noida, India, 2024, pp. 1–5. https://doi. 
org/10.1109/ICRITO61523.2024.10522428. 

12. Sampath, R., & Baskar, M., “An optimized deep learning approach to identify the 
Alzheimer’s stages identifcation based on biomarkers extraction,” 2023 Intelligent 
Computing and Control for Engineering and Business Systems (ICCEBS), Chennai, 
India, 2023, pp. 1–6. https://doi.org/10.1109/ICCEBS58601.2023.10449183. 

13. S, S., G, M., & Sherly, E., “Alzheimer’s disease classifcation from cross-sectional brain 
MRI using deep learning,” 2022 IEEE International Conference on Signal Processing, 
Informatics, Communication and Energy Systems (SPICES), Thiruvananthapuram, 
India, 2022, pp. 401–405. https://doi.org/10.1109/SPICES52834.2022.9774135. 

14. Arya, A. D., Singh Verma, S., Chakarabarti, P., & Bishnoi, R., “Prediction of Alzheimer’s 
disease - A machine learning perspective with ensemble learning,” 2023 6th International 
Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha 
Nagar, India, 2023, pp. 2308–2313. https://doi.org/10.1109/IC3I59117.2023.10397683. 

15. Prabhakar, B., & Bhargavi, M. S., “A machine learning model to identify Best blood 
plasma proteins for early detection of Alzheimer’s disease,” 2022 IEEE 4th International 
Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), 
Goa, India, 2022, pp. 190–195. https://doi.org/10.1109/ICCCMLA56841.2022.9989117. 

16. Moorthy, D. K., P, N., & Subhashini, S. J., “A review on Alzheimer’s disease detec-
tion using machine learning,” 2023 Second International Conference on Augmented 
Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 573–581. 
https://doi.org/10.1109/ICAISS58487.2023.10250457. 

17. Luz, S., Haider, F., & De Sousa, P., “Machine learning models for detection and assess-
ment of progression in Alzheimer’s disease based on blood and cerebrospinal fuid 
biomarkers,” 2023 45th Annual International Conference of the IEEE Engineering in 
Medicine & Biology Society (EMBC), Sydney, Australia, 2023, pp. 1–4. https://doi. 
org/10.1109/EMBC40787.2023.10341203. 

18. Khadatkar, D. R., & Patra, J. P. (2023). “Comparative analysis of different machine learning 
algorithms for detection of Alzheimer disease from medical images,” 2023 International 
Conference on Artifcial Intelligence for Innovations in Healthcare Industries (ICAIIHI), 
Raipur, India, pp. 1–5. https://doi.org/10.1109/ICAIIHI57871.2023.10489217 

19. Irfan, M., Shahrestani, S., & Elkhodr, M., “Early detection of Alzheimer’s disease 
using cognitive features: A voting-based ensemble machine learning approach,” in 
IEEE Engineering Management Review, 51(1), pp. 16–25, 1 Firstquarter, March 2023. 
https://doi.org/10.1109/EMR.2022.3230820. 

20. Saxena, A., & Kaur, H., “Alzheimer’s Disease (AD) Detection Using Various Machine 
Learning Techniques: A Systematic Review,” 2023 6th International Conference on 
Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 2023, 
pp. 77–81. https://doi.org/10.1109/IC3I59117.2023.10397889. 

https://doi.org/10.1109/ICCCNT56998.2023.10307780
https://doi.org/10.1109/ICCCNT56998.2023.10307780
https://doi.org/10.1109/ASET56582.2023.10180640
https://doi.org/10.1109/ICRITO61523.2024.10522428
https://doi.org/10.1109/ICRITO61523.2024.10522428
https://doi.org/10.1109/ICCEBS58601.2023.10449183
https://doi.org/10.1109/SPICES52834.2022.9774135
https://doi.org/10.1109/IC3I59117.2023.10397683
https://doi.org/10.1109/ICCCMLA56841.2022.9989117
https://doi.org/10.1109/ICAISS58487.2023.10250457
https://doi.org/10.1109/EMBC40787.2023.10341203
https://doi.org/10.1109/EMBC40787.2023.10341203
https://doi.org/10.1109/ICAIIHI57871.2023.10489217
https://doi.org/10.1109/EMR.2022.3230820
https://doi.org/10.1109/IC3I59117.2023.10397889


  

  
 

 

  
  

  

  

  

   

  

  

  

  
 

  

  

  

  

 
  

 
  

   

309 Optimizing Digital Healthcare for Alzheimer’s Disease 

21. U, B., & S, C., “Computer aided Alzheimer’s disease diagnosis from brain imaging 
dataset - A review,” 2023 Intelligent Computing and Control for Engineering and 
Business Systems (ICCEBS), Chennai, India, 2023, pp. 1–6. https://doi.org/10.1109/ 
ICCEBS58601.2023.10449067. 

22. Mandawkar, U., & Diwan, T. (2024). Hybrid cuttle fsh-grey wolf optimiza-
tion tuned weighted ensemble classifer for Alzheimer’s disease classifcation. 
Biomedical Signal Processing and Control, 92, 106101. https://doi.org/10.1016/j. 
bspc.2024.106101. 

23. Hcini et al. (2024). Investigating deep learning for early detection and decision-
making in Alzheimer’s disease: A comprehensive review. Neural Process Letters 
56, 153. https://doi.org/10.1007/s11063-024-11600-5. 

24. Uddin et al. (2023). A novel approach utilizing machine learning for the early diagno-
sis of Alzheimer’s disease. Biomedical Materials & Devices, 1, 882–898. https://doi. 
org/10.1007/s44174-023-00078-9. 

25. Pyrrho, M., Cambraia, L., & de Vasconcelos, V.F. (2022). Privacy and health practices 
in the digital age. The American Journal of Bioethics, 22(7), 50–59. https://doi.org/10.1 
080/15265161.2022.2040648. 

26. Posircaru DR, Serbanati LD. Integrating legacy medical applications in a standardized 
electronic health record platform. In2015 E-Health and Bioengineering Conference 
(EHB) 2015 Nov 19 (pp. 1–4). IEEE. 

27. Doll, J., Malloy, J., & Bland, J. (2021, July/August ). The promise of interoperability. 
The American Journal of Occupational Therapy, 75(4), 7504090010. https://doi. 
org/10.5014/ajot.2021.049002 

28. Dabbs, A. D. V., Myers, B. A., McCurry, K. R., Dunbar-Jacob, J., Hawkins, R. P., 
Begey, A., & Dew, M. A. (2009). User-centered design and interactive health technolo-
gies for patients. CIN: Computers, Informatics, Nursing, 27(3), 175–183. https://doi. 
org/10.1097/NCN.0b013e31819f7c7c 

29. Grande, D., Luna Marti, X., Feuerstein-Simon, R., Merchant, R.M., Asch, D.A., 
Lewson, A., & Cannuscio, C.C. (2020, July) Health policy and privacy challenges 
associated with digital technology. JAMA Netw Open, 3(7), e208285. https://doi. 
org/10.1001/jamanetworkopen.2020.8285. 

30. Liu, Y., et al. (2022). Computational challenges in deep learning for Alzheimer’s dis-
ease: A comprehensive review. Neurocomputing, 488, 413–424. 

31. Zhang, H., et al. (2023). Data fusion techniques for integrating heterogeneous data in 
Alzheimer’s disease research. Journal of Biomedical Informatics, 134, 104193. 

32. Li, X., et al. (2022). Telemedicine in Alzheimer's disease and other dementias: An 
updated overview. Dementia & Neuropsychologia, 16(2), 150–165. 

33. Shen, W., et al. (2022). Telehealth infrastructure, Accountable Care Organization, and 
Medicare payment reduction. Telemedicine and e-Health, 28(9), 1234–1240. 

34. Kim, J., et al. (2022). Emerging roles of telemedicine in dementia treatment and care. 
Dementia & Neuropsychologia, 16(3), 200–210. 

35. Kumar, R., et al. (2021). Telemedicine and dementia care: A systematic review of bar-
riers and facilitators. Journal of the American Medical Directors Association, 22(6), 
1234–1240. 

36. Guo, J., et al. (2023). Dynamic resource management in cloud and fog computing for 
healthcare applications. Future Generation Computer Systems, 135, 379–391. 

37. Chen, L., et al. (2022). Scalable cloud and fog computing architectures for large-scale 
Alzheimer’s disease data analysis. Journal of Parallel and Distributed Computing, 
160, 49–60. 

38. Li, T., et al. (2023). Federated learning: Privacy and security perspectives. IEEE 
Transactions on Information Forensics and Security, 18, 485–498. 

https://doi.org/10.1109/ICCEBS58601.2023.10449067
https://doi.org/10.1109/ICCEBS58601.2023.10449067
https://doi.org/10.1016/j.bspc.2024.106101
https://doi.org/10.1016/j.bspc.2024.106101
https://doi.org/10.1007/s11063-024-11600-5
https://doi.org/10.1007/s44174-023-00078-9
https://doi.org/10.1007/s44174-023-00078-9
https://doi.org/10.1080/15265161.2022.2040648
https://doi.org/10.1080/15265161.2022.2040648
https://doi.org/10.5014/ajot.2021.049002
https://doi.org/10.5014/ajot.2021.049002
https://doi.org/10.1097/NCN.0b013e31819f7c7c
https://doi.org/10.1097/NCN.0b013e31819f7c7c
https://doi.org/10.1001/jamanetworkopen.2020.8285
https://doi.org/10.1001/jamanetworkopen.2020.8285


  

  
 

  

  

  

  

310 Computational Intelligence Algorithms 

39. Wen, J., et al. (2022). Convolutional neural networks for detecting Alzheimer’s disease: 
A comprehensive review. Neurocomputing, 447, 108–120. 

40. Liu, Y., et al. (2023). Recurrent neural networks for modeling cognitive decline in 
Alzheimer’s disease. Journal of Alzheimer’s Disease, 85(1), 123–134. 

41. Vaswani, A., et al. (2021). Applications of transformer models in Alzheimer’s dis-
ease research. IEEE Transactions on Neural Networks and Learning Systems, 32(9), 
4283–4295. 

42. Schraudolph, N. N., et al. (2023). Effcient quasi-Newton methods for training deep 
neural networks. Journal of Machine Learning Research, 24, 1–25. 

43. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of 
machine learning algorithms. Advances in Neural Information Processing Systems, 25, 
2951–2959. 

44. Zhang, H., et al. (2021). Telehealth delivery of evidence-based intervention within 
older adult populations: A scoping review. Journal of Applied Gerontology, 40(12), 
1234–1245. 



311  

 

 

 
  

  
 
 
 
 
 
 

 

20 Artifcial Intelligence 
A Game-Changer in 
Parkinson’s Disease 
Neurorehabilitation 

Nabeela Rehman, Arshya Anwar, and Sahar Zaidi 

20.1 INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative, extrapyramidal, progressive, 
chronic disorder of movement characterized by a reduction of dopamine-producing 
neurons [1, 2]. Recent epidemiological research has provided new insight into 
the rising incidence and pattern of this debilitating condition around the world. 
According to the Global Burden of Disease (GBD) report, the number of people 
with PD increased by 118% to 6.2 million between 1990 and 2015. It is expected 
that this concerning pattern will persist, with over 12 million people worldwide 
estimated to have PD by 2040 [3, 4]. Notably, the disease is associated with motor 
symptoms like rigidity, tremors, bradykinesia, postural instability, muscle stiffness, 
and coordination issues, all of which can limit a patient’s movement and indepen-
dence [5]. 

Artifcial intelligence (AI) has shown signifcant potential in the diagnosis and 
treatment of disease. With high accuracy rates ranging from 93.88% to 96.27%, 
many AI models, including a support vector machine, random forest, and decision 
tree, are used to assess PD. Early and precise prediction is essential, and these mod-
els help with that [6, 7]. 

Furthermore, AI methods assist in evaluating disease severity and stage, produc-
ing reliable evaluations necessary for PD patients’ appropriate treatment and moni-
toring [8]. Automated assessment of motor and gait impairments is one such use; this 
is an important frst step toward early identifcation of the disorder [9]. Researchers 
can now examine and compare walking patterns between PD patients and healthy 
individuals owing to the development of autoregressive algorithms that can extract 
information from gait signals [10]. 

By accurately classifying patients based on their speech and language patterns, 
AI − especially deep learning  − also helps develop speech biomarkers for the assess-
ment of disorders and provides effcacy for speech rehabilitation [11–13]. Several 
studies have emphasized the practical importance of AI methods, like computer 
vision and machine learning algorithms, in precisely detecting PD based on small 
variations in motor control in handwriting patterns [14]. These AI-driven methods 
extract information from handwriting photos, such as spectral properties, pressure 
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FIGURE 20.1 Projected global burden of Parkinson disease, 1990–2040. 

data, and kinematic parameters to precisely differentiate PD patients from healthy 
individuals [15]. Current machine learning techniques have demonstrated encourag-
ing outcomes in accurately diagnosing PD, offering a useful adjunct to traditional 
clinical evaluation approaches. AI allows for proactive intervention in the manage-
ment of the disease and greatly improves diagnostic precision by integrating clinical 
data with machine learning algorithms [6]. Additionally, AI-powered rehabilitation 
programmers can be very helpful in assisting people with PD to regain and maintain 
their independence and mobility. The development of specialized rehabilitation pro-
grams that are tailored to the particular needs of every individual can be provided. 

This chapter will talk about AI-based evaluation and treatment strategies along 
with robotic rehabilitation for gait management, machine learning models for speech 
rehabilitation, and the role of virtual reality in maintaining a healthy diet and sleep 
and performing an adequate amount of physical activity to improve the quality of 
life of people with the disease. Figure 20.1 shows projections for the growth in the 
use of these strategies. 

20.2 INTRODUCTION OF INTELLIGENCE IN PARKINSON’S DISEASE 

20.2.1 AI-BASED GAIT EVALUATION AND REHABILITATION 

A modern instance of technological innovation is the virtualization of rehabilitation. In 
the evaluation and management of PD, AI-based technologies have become increasingly 
important in recent years [16, 17]. Furthermore, PD biomarkers for analysis of posture 
during the gait cycle can be used by various devices with machine learning and deep 
learning features to carry out automated detection [18]. Numerous AI models, including 



 
 

 

 
 
 

  

 

 
 
 
 

 
 

 

313 Artifcial Intelligence 

machine learning techniques, smartphone applications, sensory-based technology, and 
data on nocturnal breathing, are utilized to study and identify PD [19]. Gait analysis 
and assistive technology have been combined, allowing sensor-equipped devices to rec-
ognize and predict risks associated with falling (freezing of gait) to prevent falls or 
reduce their impact [18, 20]. Excellent outcomes have been observed when using iner-
tial measurement units (IMUs) to observe the advancement of PD and identify specifc 
gait anomalies in individuals (see Figure 20.2). Research has shown that IMU-based 
models of gait assessment are capable of quantifying a wide variety of gait factors, 
such as spatiotemporal parameters, joint kinematics, variability, asymmetry, and stabil-
ity, and can accurately distinguish between healthy controls and early-stage PD [21]. 
Wearable IMUs have also been used to track motor characteristics of PD, identify fuc-
tuations in motor performance, dyskinesia, and freezing of gait, and evaluate treatment 
responsiveness in outdoor environments, demonstrating its potential as a tool for ongo-
ing monitoring and disease rehabilitation [22]. One well-known disorder that frequently 
harms a person’s quality of life is gait festination. The pooling techniques have been 
heavily utilized by convolutional neural networks (CNN) in particular for their deep 
learning strategies. In fog prediction, recurrent neural networks (RNNs), CNNs, and 
other distinct neural network subtypes have also been extensively used [23]. 

AI models like the hybrid ConvNet-Transformer architecture can accurately diag-
nose PD severity stages from gait data, leveraging the strengths of CNNs and trans-
formers to capture both local features and long-term spatiotemporal dependencies in 
the data [24]. Levodopa administration combined with any type of implantable pulse 
generator (IPG) stimulation results in a signifcant improvement on posture and also 
average step height and step length on each side [25]. 

Also, in terms of PD gait evaluation and rehabilitation, random forest outper-
formed naïve Bayes, which had an accuracy of 84.6% in diagnosing the disease, 
while random forest performed exceptionally well in identifying its stages [26]. 

FIGURE 20.2 Signifcance of ML algorithms for PD diagnosis and stage identifcation by 
analysing gait parameters. 
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K-Nearest Neighbors (KNN) helps identify Parkinson’s disease symptoms early 
and facilitates prompt treatment [27]. There is a signifcance of machine learning 
models for PD classifcation based on selected spatial-temporal parameters, which 
include step length, step width, and velocity. Two relevant gait features, stride width 
and step double support time, are used for quantifying the disease stage. Different 
algorithms like naïve Bayes (NB), support vector machine (SVM), decision tree 
(DT), random forest (RF), logistic regression (LR), and multilayer perceptron 
(MLP) can be used to assess different variables of gait [26]. The procedure for 
gait analysis includes a collection of data with nonwearable or wearable devices 
that is preprocessed and subsequently classifed using different algorithms for the 
automatic recognition of gait, detection of spatiotemporal variables, PD diagnosis, 
and staging [18]. 

20.2.2 ROBOTIC REHABILITATION 

Robotics and AI integration has become a viable treatment strategy for PD 
patients in recent years. Robotic rehabilitation systems have the ability to offer 
tailored, rigorous, and repetitive training − a strategy that has been demon-
strated to be successful in promoting functional recovery and improving motor 
abilities [28, 29]. 

One of the main benefts of robotic rehabilitation is that it accurately measures 
and monitors a patient’s motor abilities as it makes it possible to customize train-
ing regimens to meet the demands of each person. Exoskeletons and end-effectors 
are two popular robotic devices used for motor training; each has advantages of 
its own. Exoskeletons (devices where a particular joint’s movement is regulated, 
such as an ankle, knee, or hip joint) or end-effect robots, in which equipment is 
located at the extremity of the limb (for example, the feet are set on a footplate) 
[30, 31]. 

Robotic-assisted rehabilitation showed marked improvement in balance conf-
dence, fatigue, and lower limb motor performance [32]. Virtual reality in conjunc-
tion with robotics is the best possible application, and it should be encouraged [33]. 
The use of robotic exoskeletons has been proven to be benefcial for PD rehabilita-
tion by maintaining joint mobility, stimulating motor units, and standardizing wrist 
movements, thereby improving patient care and increasing the effciency of wrist 
rehabilitation [28]. 

The Honda Walking Assist (HWA), a portable robotic exoskeleton device (EXOD) 
for single joints, is utilized in gait training, demonstrating potential benefts for those 
with more severe motor impairments. Moderately advanced PD patients experience 
immediate enhancements in cadence, step length, hip fexion, and extension range 
while using the device along with improved walking endurance during unassisted 
walking following ten half-hour sessions of gait training at home [34]. 

Memory, walking endurance, and engagement in high-intensity exercise 
have shown enhancement through the application of exoskeletons. Therefore, 
incorporating robotic exoskeletons and end-effector robots in PD rehabilitation 
programs can be benefcial for enhancing motor function and overall quality 
of life [35]. 
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20.3 ROLE OF MACHINE LEARNING FOR SPEECH 
EVALUATION AND REHABILITATION 

Machine learning algorithms can recognize dysarthria resulting from PD and evalu-
ate the parameters of speech like phonation, prosody, and articulation through voice 
assessment accurately [36]. Its ability to evaluate minor changes in voice features is 
far better than that of audiologists and speech therapists [37] and helps in the early 
recognition of PD [38]. Generally, vowels like \a\, \e\, and \u\ are used for sustained 
phonation [39]. The algorithm consists of getting speech data from the microphones, 
which is characterized by the articulation involving tongues, jaws, lips, and other 
movements of vocal muscles. Then the phonetic sequence is generated for mapping 
the articulation features to phonetic sequences or texts, and in the fnal step, the 
sequences/texts are converted to speech using language processing techniques based 
on desired rhythm, syntactic information, and intonation [40]. Nowadays, smart-
phones are also equipped with high-performing processors and sensors, which are 
used for remote assessment and can screen large populations effectively and facili-
tate the rehabilitation of PD patients. 

The neuro-fuzzy system (NFS) and SVMs are used for the evaluating total 
Unifed Parkinson’s Disease Rating Scale (UPDRS) using a sustained phonation of 
vowels [41]. In the neuro-fuzzy system, the output shows a continuous value between 
0 and 1, which can be acquired by applying different rules to the input values, which 
can vary in different neurons. The estimated score is useful for remote assessment 
of severity [42]. 

The SVM is a biomedical decision support system [43].  It works by extracting 
signal features from speech samples and classifying the speech symptom severity 
levels under the UPDRS [44]. It is the best method, with an accuracy of 86% [45], 
and allows for early management. 

RF is a simple method and works on the DT concept [46] with an accuracy of 
96.8%. It is like a fowchart that consists of different speech features [47]. Vaiciukynas 
et al. proposed a method to detect PD by extracting the phonation of the /a/ vowel 
from short sentences and classifying them according to different individual feature 
sets and decision-level fusion sets [48]. 

20.4 ROLE OF VIRTUAL REALITY IN MANAGING 
PARKINSON’S DISEASE 

Sustenance of lifestyle modifcations is immensely challenging for motor and non-
motor signs associated with PD. The advancements in digital therapeutics provide 
us with various scopes to increase engagement in healthy lifestyle behaviors, such 
as exercising regularly, a healthy diet, and better sleep hygiene habits. Strategies 
like cognitive behavioral change therapy are effective in improving behavior [49] by 
goal setting, action planning, self-evaluating, and providing social support, positive 
feedback, and rewards. 

These are achieved with the help of relational agents that are computational arti-
facts designed to entrench social-emotional relationships with users. A relational 
agent can be in the form of an animated virtual coach that has video conversions 
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with users through a touch screen on a tablet or computer [50]. Recent advancements 
in virtual coach technology also allow recognition of written or spoken language 
enabling user-oriented and distinctive communications and have increased the scope 
for more complex dialogues and fexibility in conversations [51]. The virtual coach 
guides them through an educational session, regarding different things like step 
counts and customized diet patterns and is available 24/7 to interact with users. With 
various advances in AI, virtual coaches have tremendous prospects to promote self-
evaluation and management across myriad domains like physical activity, healthy 
diet, and optimal sleep [52]. 

20.5 ADVANTAGES AND DISADVANTAGES OF EXISTING 
AI METHODS FOR THE CLASSIFICATION OR 
DETECTION OF PARKINSON’S DISEASE 

20.5.1 ADVANTAGES 

The classifcation of PD symptoms has been signifcantly improved by AI-based 
machine learning algorithms, which also improve early detection and individualized 
treatment. To fnd patterns suggestive of PD, these algorithms examine a variety of 
data types, such as voice, EEG signals, and motor activities. 

• Voice analysis, which identifes minor speech abnormalities connected to 
the illness, is one type of information that machine learning models can use 
for predicting PD symptoms [53]. 

• AI-based machine learning methods enable better PD classifcation by eval-
uating electroencephalography (EEG) data, leveraging extended empirical 
mode decomposition (EEMD) for feature extraction and deploying models 
like RF, gradient boost, SVM, CNN, and deep neural networks (DNNs) for 
accurate detection [54]. 

20.5.2 DISADVANTAGES 

• The classifcation in supervised machine learning is prone to error 
due to labeling by clinicians in classifying the disease stages and quantif-
cation [55]. 

• The “black box” nature of machine learning is a common challenge. 
New deep learning models, also known as DNN models, usually consist 
of millions of parameters that increase the complexity and render the 
models incomprehensible to clinicians for accurate classifcation of 
results [55]. 

• The training of numerous AI models is based on restricted datasets, pos-
sibly failing to encompass the complete range of PD symptoms. This could 
result in overftting and a lack of robust generalization. Additionally, AI 
models may encounter challenges in selecting features and relying on sub-
jective data interpretation, consequently affecting their accuracy and clini-
cal relevance [56]. 
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20.6 CONCLUSION 

AI is regarded as a successful therapeutic alternative for the recovery of indi-
viduals with neurological conditions like PD. It supports the creation of novel 
assessment and rehabilitation procedures. It has demonstrated encouraging out-
comes in terms of motor and nonmotor symptoms,  improved the quality of 
care, and reduced the cost for patients and healthcare systems. The intersec-
tion of AI and neuroscience is making significant future advancements, and 
emerging technologies have the potential to drastically change the way of man-
aging PD. 
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21 Targeting Upper-Limb 
Sensory Gaps 
New Rehab Insights for 
Chronic Neck Pain 
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21.1 INTRODUCTION 

Chronic neck pain (CNP) is one of the major musculoskeletal health problems 
worldwide. Seen in the general population, the prevalence of neck pain world-
wide ranges from 0.4% to 86.8% with a mean prevalence of 23.1%. Higher preva-
lence was estimated among women, in higher-income countries, and in urban 
areas [1]. In the Global Burden of Diseases (GBD) 2010, neck pain ranked 21st 
on the global burden and fourth in terms of disability among the 291 conditions 
that were considered [2]. Global prevalence of neck pain of greater than three 
months duration has increased to 21% in the ten years between 2005 and 2015 
[3] (GBD 2016). When quality of life (QOL) of CNP was measured, it was found 
that longer duration of symptoms results in negative effects on the mental health 
status of the patients [4]. Moreover, certain cognitive factors seen to be related 
to higher intensity of pain are mainly pain catastrophizing and greater vigilance 
toward pain [5]. 

Furthermore; sleep quality disturbances in CNP have been reported. It has been 
demonstrated that 68% of mechanical neck pain patients reported poor quality of 
sleep with a Pittsburgh Sleep Quality Index (PSQI) score of >8. Sleep disturbances 
should be taken into account while treating neck pain patients [6]. Additionally, 
greater intensity of pain was reported to be one of the risk factors of insomnia in 
CNP in addition to depression, female gender, older age, and any other comorbid 
musculoskeletal conditions [7]. 

The recent evidence emphasizes the dysfunction of scapular stabilizers in 
CNP patients. The work of Cagnie et al. (2014) and Cools et al. (2013) signi-
fied the scapulothoracic muscle’s role in CNP patients [8, 9]. Secondly, upper-
limb repositioning acuity, i.e., position matching, was found to be reduced in 
CNP patients [10]. Zabihhosseinian et al. (2015) postulated that neck muscle 
fatigue alters upper-limb proprioception [11]. Yilmaz et al. (2024) suggested 
that target-controlled goal-directed training should be incorporated into reha-
bilitation [10]. 
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Raizah et al. (2023) reported that disruptions in cervical spine proprioception are 
frequently associated with impairments in functional balance in individuals with 
CNP [12]. Balance disorders can also be aggravated by misalignment between cervi-
cal, visual, and vestibular refex pathways, which may cause inappropriate sensory 
integration within the CNS. 

These sensory defcits emphasize the need to address proprioceptive defcits to 
improve CNP patients’ functional outcomes. Thus, this review aims to implicate 
these fndings in the rehabilitation of CNP patients and raise awareness about these 
treatment regimens among rehabilitation clinicians. 

21.2 SCAPULAR DYSFUNCTION AND CHRONIC NECK PAIN 

CNP is defned as pain experienced in the posterior region of the cervical spine, 
which persists for more than three months with any generalized neck and/or shoulder 
pain where symptoms can be detected by cervical spine movements, with sustained 
postures of neck, or on deep palpation of the cervical spine muscles [13, 14]. However, 
scapular dyskinesia is defned as any alteration in the movement of the scapula dur-
ing upper-limb movements or its position at rest [15]. Helgadottir et al. (2011) in 
their study revealed that in CNP patients, there is an alteration in the alignment of 
the shoulder girdle and cervical spine with reduced clavicular retraction and scapu-
lar upward rotation during upper-limb movements and decreased cranial angle [16]. 
The work of Cagnie et al. (2014) and Cools et al. (2013) further emphasizes scapu-
lothoracic musculature [8, 9]. These muscles have some common attachment points 
with cervical muscles, and thus any alterations result in abnormal strains in cervical 
regions [8]. They provide major stability as well as mobility to the cervical spine 
The main scapular muscles involved in chronic neck pain are the upper, middle, 
and lower trapezius and the serratus anterior, pectolaris minor, levator scapulae, and 
rhomboids [9] (Figure 21.1). 

Biomechanically altered activity of these muscles was reported. For instance, 
Castelein et al. (2016) postulated that patients with neck pain were found to have 
lower control of the middle trapezius when compared to healthier counterparts, and 
this reduced ability of the trapezius to retract results in abnormal position of the 
scapula [17]. Moreover, increased tension in the levator scapulae leads to compres-
sive forces on the cervical spine [18]. Serratus anterior delayed activation of lesser 
duration was also postulated by a study [17]. Thus, it is evident from the aforemen-
tioned studies that altered activity of scapular muscles in CNP patients results in 
scapular dysfunction, which subsequently leads to the development of mechanical 
chronic neck pain. Scapular stabilization exercises are the mainstay of chronic neck 
pain patients. Current evidence implicates retraining scapular muscles with selective 
activation of muscles. By defnition, stabilization means the ability of a system to 
resume its orientation after any perturbations or movement [19]. To restore the pur-
poseful movement of the scapula, exercise training should be in a manner that should 
be specifc to the pattern evaluated and target the patient’s functional defcit [8]. 
As suggested by Cools et al. (2013), these training regimens should be focused on 
the patient’s daily life limitations, which can eventually bring signifcant changes in 
their symptoms [9]. 
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FIGURE 21.1 Muscles of the cervical spine. 

21.3 SENSORIMOTOR SYSTEM AND PROPRIOCEPTION 

Dr. Vladimir Janda, during the 1950s and 1960s, advocated that sensory and motor 
systems cannot be taken as two different, separately working systems; instead, 
he integrated them in his approach to manage chronic pain syndromes[20] (see 
Figure 21.2). Janda and VaVrova (1996) developed rehabilitation of the lower 
extremities as well as the spine [21]. It was recommended that there are three loca-
tions in the body where enormous amounts of proprioceptors are present, which 
are mainly the foot, sacroiliac joint (SI), and the cervical spine. The aim was to 
increase proprioception of these sites to facilitate a smooth, well-coordinated 
movement pattern. 

Proprioception was frst devised by Dr. Charles Sherrington (1906). It was 
defned as a sense of position, posture, and movement. Freeman and Wyke (1966) 
did further research and declared that proprioceptive receptors were found in the 
nerve endings of the joints of cats, and if these receptors were disconnected from 
the CNS, cats were incapable of walking correctly [22]. To describe proprioception 
includes afferent information arising from joint mechanoreceptors that are respon-
sible for postural control, joint stability, and other conscious sensations. Thus, it 
includes subsystems: joint position sense (posture of segment), kinaesthesia (which 
can be active or passive), and resistance to movement as described by Sherrington 
[23, 24]. Contrary to this, Somatosensory System is a broader term that encircles 
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FIGURE 21.2 The sensorimotor system. 

mechanoreceptors, thermoreceptors, and nociceptors [24]. Proprioceptors are 
present in muscle, tendon, ligament, and capsule, while other mechanoreceptors 
are also found in deep skin and fascia [25]. Those located in the musculotendinous 
junction are known as Golgi tendon organs (GTOs), whereas muscle spindles are 
found in muscle tissue. The main function of GTOs is to cue for active muscle ten-
sion, i.e., during the state of contraction, and not during an inactive or passive state 
[26]. Any goal-directed movement requires feedback through mechanoreceptors 
and feed-forward control, i.e., anticipating change [24]. 

21.4 ALTERED PROPRIOCEPTION IN MUSCULOSKELETAL 
DISORDERS 

Altered proprioception can be related to various clinical fndings like pain, mus-
cle fatigue, and effusion [27]. Cervical spine disorders can lead to the develop-
ment of impaired proprioception, as stated [28]. 

21.5 ALTERED PROPRIOCEPTION AND ITS CONSEQUENCES 

Consequences such as changes in motor control strategies were observed. 
For instance, decreased activation of deep cervical fexors was observed dur-
ing upper-limb tasks [29]. Painful musculoskeletal disorders alter load sharing 
among muscles and result in various neuromuscular adaptations and decreased 
repositioning acuity in performing movement tasks [10, 30]. These dysfunctions 
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result in clinical symptoms of disrupted coordination and smoothness of move-
ment [28]. 

21.6 UPPER-LIMB PROPRIOCEPTION IN CHRONIC NECK PAIN 

Cervical muscles of the spine have abundant proprioceptive receptors, which have 
an association with central and peripheral refexes, including the vestibular system, 
postural control, and visual systems [31]. Additionally, the suboccipital muscles par-
ticularly own a high density of muscle spindles [27, 32]. The upper-cervical spine 
from C1 to C3 has direct connections to the vestibular nuclear complex and the supe-
rior colliculus, for synchronization between the head and neck movement with vision 
[33, 34]. It was seen in a handful of studies that position sense in arm movement, i.e., 
repositioning acuity, is reduced. Reduced repositioning acuity of the elbow in people 
with whiplash-associated disorder (WAD) and of the shoulder in CNP and WAD has 
been observed [10, 35]. Röijezon et al. (2009) hypothesized that CNP has decreased 
neck-shoulder proprioception due to reduced precision in fast pointing movements 
[36]. Moreover, CNP was found to have more jerky movements of the cervical spine 
with decreased smoothness of the movement, leading to poor motor control [28]. 
The head position has a major impact on the organization of sensory information for 
upper-limb proprioception [35, 36]. Furthermore, it was postulated that any change 
in the position of the head and neck with vision occlusion affects sensory informa-
tion and elbow joint position sense in neck pain patients with WAD [35]. Thus, they 
demonstrated that the position of the head determines the position of upper-limb seg-
ments as CNS constantly matches the position of the head and neck with the upper 
limb; consequently, head movements and altered proprioception result in reduced 
accuracy of upper-arm movements [11]. It is suggested that the acuity tasks of point-
ing, especially endpoint acuity, were variably affected in CNP patients compared to 
healthier controls [10]. From a functional point of view, affected proprioception and 
goal-directed movements reduce the ability of an individual to carry out activities 
like carrying, reaching for objects, and lifting. If there is a small increase in endpoint 
variability, it will affect precision and timing, which will eventually compromise the 
performance of an individual whether in playing sports or any musical instrument 
[10]. Possible mechanisms as postulated by Yilmaz et al. (2024) are quite tentative. 
They include reduced acuity of signals from the muscle spindle system and injuries 
of the peripheral nervous system somewhere along the sensory pathways, although 
they argue that it is not a major factor, as there are no symptoms of paresthesia or 
sensory loss in their patient population [10]. Visual disturbances and oculomotor 
defcits have been found to affect those with chronic neck pain. A strong association 
between self-rated neck function and endpoint acuity was found. [37]. 

21.7 IMPLICATIONS IN REHABILITATION 

The main objective of this analysis is to provide an update on the rehabilita-
tion of CNP patients and to extend the knowledge of clinicians to develop a 
new treatment regimen of scapular stabilizers and upper-limb proprioception 
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training as an adjunct in the current exercise methods. Active joint repositioning 
technique for enhancing upper-limb proprioception is based on motor learning. 
Motor learning is defned as relative or permanent changes in behavior that are 
enhanced by the practice of movements [38]. The two main effects of motor 
learning are retention and transfer. Retention is when the changes last for a 
longer time due to neuroplastic changes in the CNS, and the transfer effect is 
when the transfer of this training is seen in other similar tasks or daily activity 
task requirements [38]. To enhance the training, the factors responsible are that 
we must ensure that exercise is not too easy or too diffcult for the patient and 
should be adjusted accordingly to the patient’s skills (challenge point frame-
work). Secondly, it should include repetitive solving skills rather than repeating 
it only once [38, 39]. 

Each patient will encounter three phases of motor skills acquisition: the cognitive 
phase, the associative phase, and the autonomous phase (see Figure 21.3). 

Cognitive phase: It involves making the patient understand what to do. This 
phase has inconsistent but large gains. 

Associative phase: When the patient determines the strategy to perform the 
task. Here the gains are more gradual. 

Autonomous phase: When less conscious is needed to perform the task and is 
simultaneously performed with other tasks [39, 40]. 

Looking at these aspects, we can determine whether motor learning improves 
after proprioceptive training. Ostry et al. (2010) postulated that teaching an individ-
ual to reach with a directional force will result in systematic change in the perception 

FIGURE 21.3 Phases of motor skill acquisition. 
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of hand position in space, and the perceptual change persisted for 24 hours even 
when the duration of training is as short as ten minutes [41]. Thus, learning to pro-
duce accurate movements is both sensory and motor [42]. Wong et al. (2012) experi-
mentally concluded that motor learning is improved by proprioceptive training [43]. 
The observed motor learning improvement results from changes in motor cortical 
regions and subcortical regions. The other areas involved are the cerebellar cortex 
and dorsal premotor cortex [42]. 

21.8 CONCLUSION 

There is a scarcity of research on the aforementioned concept, i.e., upper-limb pro-
prioceptive training in CNP patients. Although the work of Cagnie et al. (2014) and 
Cools et al. (2013) signifes the scapulothoracic muscle’s role in neck pain patients, 
literature still lacks any evidence-based study for upper-limb proprioceptive train-
ing to the best of our knowledge and skills [8, 9]. The prognosis of CNP is poor 
as indicated that 50−85% of patients who experience CNP report neck pain in the 
next fve years [44]. Thus, it depicts that most of this patient population does not 
recover absolutely. A fne-tuned sensorimotor system is essential for various tasks 
that require precision. When the proprioception is the defcit, the vision outweighs 
performing movements [45]. Another method to improve accuracy in goal-directed 
movements is the co-contraction of antagonistic muscles or stiffening of the muscles 
to improve endpoint movement variability. Their hypothesis is based on neuromotor 
noise theory, which describes that prolonged and repetitive movements will result in 
increased muscle co-contraction [46]. This leads to greater stress on the head and 
neck and makes it more vulnerable to strains. Consequently, this co-contraction of 
the muscles reduces the error of the movement but results in wear and tear of small 
fbers [47]. 

Other than these large bodies of previous works, recent research is more 
focused on the kinetic chain. Abichandani and Parkar (2015) postulated that there 
is a repositioning error in the shoulder, elbow, and wrist joints in CNP patients as 
compared to healthier controls [48]. Zabihhosseinian et al. (2015) concluded in 
their study that altered or disrupted upper-limb proprioception due to neck muscle 
fatigue has negative implications in workplace settings as well as in sports and 
recreation by increasing the chances of upper-limb injuries [11]. Lastly, a recent 
study confrmed that in CNP patients with neck fatigue, wrist joint position sense 
is affected [49]. 

There is a need to understand these interconnections and their impact on the 
population of CNP. This will help clinicians identify the cause of the symptoms 
and treat patients with long-term goals to prevent reoccurrences. Integration of 
these systems should be the focus of all treatment regimens rather than treating 
the condition in isolation. The entire purpose of presenting this literature is to 
bring forward an insight into recent advances in the physiological basis of our 
treatment approaches. Regimens that are more focused on movement control and 
that integrate vision and proprioception of the neck and upper extremities should 
be a part or adjunct to the rehabilitation of CNP. 
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